

Physics Equations Sheet GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)

HT = Higher Tier only equations

kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2} m v^2$
elastic potential energy = 0.5 × spring constant × (extension) ²	$E_e = \frac{1}{2} k e^2$
gravitational potential energy = mass × gravitational field strength × height	$E_P = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
power = energy transferred time	$P = \frac{E}{t}$
power = work done time	$P = \frac{W}{t}$
efficiency = useful output energy transfer total input energy transfer	
efficiency = useful power output total power input	
charge flow = current × time	Q = I t
potential difference = current × resistance	V = I R
power = potential difference × current	P = VI
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = P t

	energy transferred = charge flow × potential difference	E = Q V
нт	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$
	density = mass volume	$\rho = \frac{m}{V}$
	thermal energy for a change of state = mass × specific latent heat	E = m L
	weight = mass × gravitational field strength	W=m g
	work done = force × distance (along the line of action of the force)	W = F s
	force = spring constant × extension	F = k e
	distance travelled = speed × time	s = v t
	acceleration = change in velocity time taken	$a = \frac{\Delta v}{t}$
	(final velocity) ² – (initial velocity) ² = 2 × acceleration × distance	$v^2 - u^2 = 2 \ a \ s$
	resultant force = mass × acceleration	F = m a
нт	momentum = mass × velocity	p = m v
	period = $\frac{1}{\text{frequency}}$	$T = \frac{1}{f}$
	wave speed = frequency × wavelength	$v = f \lambda$
нт	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l

Physics 1: Energy Section 1: Energy stores and methods of transfer					Section 3: Energy Resources						
					Resource	Renewable	? Uses	Advantages	Disadvantages		
Chemical sto Kinetic store Gravitational	re Potential store	Energy stored as chemic Energy stored in objects Energy stored in objects	cals waiting to i that move. raised up agai	react.	Fossil Fuels	Non- Renewable	Electricity, transport, heating	Reliable – electricity can be generated all of the time. Relatively cheap way of generating electricity.	Produces carbon dioxide , a greenhouse gas that causes global warming. Can produce sulphur dioxide , a gas that causes acid rain .		
Elastic Potential store Energy stored in an object Energy stored in the mov Internal store kinetic energy of the part			ect that have be vement of part articles and the	een stretched. cicles. A combination of the e potential energy of particles	Nuclear Fuel	Non- Renewable	Electricity	Produces no carbon dioxide when generating electricity. Reliable – electricity can be generated all of the time.	Produces nuclear waste that stays radioactive for thousands of years. Expensive to build and decommission power stations.		
Nuclear storeEnergy stored in the nuclei of atoms.Magnetic storeEnergy stored in magnets that are attract				tracting or repelling.	Bio Fuel	Renewable	Heating, electricity	Carbon neutral . Reliable – electricity can be generated all of the time.	Production of fuel may damage ecosystems and create a monoculture .		
Electrostatic Mechanical tr Electrical trar	store ransfer nsfer	Energy stored in electri Energy transferred wher Energy transferred wher	at are attracting or repelling. es through a distance. oves.	Wind	Renewable	Electricity	No CO ₂ produced while generating electricity.	Unreliable – may not produce electricity during low wind. Expensive to construct.			
Wave transferEnergy transferred by waves e.g. sound & lighHeat transferEnergy transferred when an object is heated.				nd & light. neated.	Hydroelectricity	Renewable	Electricity	No CO2 produced while generating electricity.	Blocks rivers stopping fish migration . Unreliable – may not produce electricity during droughts .		
Section 2: I learn the ur Calculation	I mportant equ nits and know h Equation (giv	ations – you will be give ow to use the equation en on equations sheet)	en the equation Symbols	n in the exam BUT you must Units (must learn)	Geothermal	Renewable	Electricity, heating	Does not damage ecosystems. Reliable source of electricity generation.	Fluids drawn from ground may contain greenhouse gases such as CO ₂ and methane. These contribute to global warming.		
Kinetic energy store Gravitational	Kinetic energy Gravitational po	= 0.5 x mass x velocity ²	$E_k = 0.5 \text{ m v}^2$	Energy – Joules (J) Mass – kilograms (kg)	Tidal	Renewable	Electricity	No CO2 produced while generating electricity.	Unreliable – tides vary . May damage tidal ecosystem e.g. mudflats.		
energy store	gravitational fie	$E_{p} = m g$ $E_{p} = m g$ $P = F$		(m/s)	Waves	Renewable	Electricity	No CO₂ produced while generating electricity.	Unreliable – may not produce electricity during calm seas.		
Power	Power =energy Power = work	done ÷ time	e $r - \frac{L}{t}$ Gravitational field strengthP = \underline{W} - Newtons per kilogram (N/kg)		Solar	Renewable	Electricity, heating	No CO ₂ produced while generating electricity.	Unreliable – does not produce electricity at night . Expensive to construct.		
Efficiency	Efficiency = <u>us</u> to	<u>eful energy output</u> tal energy input		Power – Watts (W)	Section 4: Key Dissipation	Section 4: Key terms Dissipation Energy becoming spread out instead of in a concentrated store. "Wasted" e					
Efficiency	Efficiency = <u>us</u> to	<u>eful power output</u> tal power input	power output Time – seconds (s) power input Work done – Joules (1)		Lubrication	Lubrication A oi		A method of reducing unwanted energy transfers by application of a lubricant (e.g. oil) to reduce friction . Occurs in machines.			
Specific Heat	Change in ther	mal energy = mass x apacity x temperature	ΔΕ= m c Λθ	Specific heat capacity –	Insulation	A m	A method of reducing energy transfers by the use of insulators (non-conductive material). Occurs in buildings.				
Capacity	change			Contigrado (1/Kg°C)	Conservation of	energy Ti	he law that st	tates that energy cannot be c	reated or destroyed.		
					Specific neat cap	Dacity II	ne energy nee	eueu to raise ing of a material	Dy 1 ⁻ C.		

Physics 2: Electricity		Section 4: V, I and R in Series and Parallel						Section 5: IV Graphs		
Section 1: Circuit Symbols		Type of circuit	Current	Poten	ial Difference	Resistance	Current	/	Fixed Resistor (Ohmic Conductor)	
- switch (closed)	lamp fuse	Series	Series The current is the san at every point in the circuit and in every component.		al potential ce is shared n the ients.	The more resistors, the great the resistance. The total resistance of a circuit is the sum the resistance of each componen $\mathbf{R}_{\text{total}} = \mathbf{R}_1 + \mathbf{R}_2$	of t.		Current and potential difference are directly proportional . Resistance is constant .	
$\begin{array}{c} - - - - - - - - - - $	voltmeter ammeter	Parallel	The total current through the whole circuit is the sum the currents through the separate components.	t The pot differen of compor ough same.	ential ce across each ent is the	Adding more resistors in parall decreases resistance. The tot resistance of two resistors is le than the resistance of the smallest individual resistor.	el Current :ss	 Potential difference 	Filament Lamp Resistance of a filament lamp is not constant. As temperature increases, resistance increases. Ions within the lamp vibrate more, increasing collisions with electrons.	
	ulernistor	Live	Brown colour. C and other wires sh	Current flows to the appliance. Potential difference between this should be 230V . urrent taken away from appliance. Potential difference should be			is Current	/	Diode/ LED The current through a diode	
variable resistor	LDR	Neutral	Blue colour. Curr OV.				Potential difference		The diode has a very high resistance in the reverse	
		Earth	Yellow and gree live wire touches t	n colour. Pote the metal casing	ntial difference g of an applian	of OV . Carries charge to Earth if ce.			direction.	
Section 2: Important Equations – given	in exam but i	nust learn i	units	Section 3: K	ey Terms		Section 7: Main	s Electrici	ty	
Equation	Symbols		Units	Electric currer	It The flow of	electric charge.	Alternating Current	The curre e.g. main	nt regularly changes direction s electricity	
Charge flow = current x time Q = I x t		Charge flow - coulomb (C)			The potentia	l difference between two points	Direct Current The cur e.g. bat		rent flows in one direction only tteries.	
Potential difference = current x resistance	$V = I \times R$	Current – amperes (A)		Potential when a could		lomb of charge passes				
Power = potential difference x current	$P=V\timesI$	Time – se	econds (s)	causes cha		rge to flow.	Mains Electricity	230V and	I and at a frequency of 50Hz .	
Power = current ² x resistance $P = 1$		Potentia	l difference –	Posistanco	Resistance is	s caused by anything that	National Grid	A series of	cables and transformers linking	
Energy transferred = power x time E =		volts (V)		Resistance	opposes the	e flow of electric charge.	 	power stations to consumers.		
Energy transferred = charge flow x potential difference	E = Q x V	Resistan	ce – ohms (Ω) watt (W)	Charge	Anything cha	arged that is able to move within ectrons or ions.	Step-up Transformer		sion across power cables. This the current and therefore less	
Potential difference across primary coil x		Fnerav =	ioules (1)	Series	A circuit with take.	only one route for charge to	Transionnei	heat is los National G	at is lost from the cables. This makes the tional Grid efficient.	
current in primary coil = potential difference across secondary coil x current in secondary coil	$V_{S}I_{S} = V_{P}I_{P}$	Energy = joules (J)		Parallel	A circuit with charge to tal	e more than one route for ke.	Step-down Transformer the cables		the potential difference from to 230V for use by consumers.	

Physics 3: Particle Model of Matter

Section 1: Key Terms	5
Density	How much mass a substance contains compared to its volume . Solids are usually dense because the particles are closely packed.
State of matter	The way in which the particles are arranged – solid, liquid or gas.
Change of state	When a substance changes from one state of matter to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.
Physical change	A change that can be reversed to recover the original material. E.g. a change of state.
Chemical change	A change that creates new products . It cannot easily be reversed . E.g. a chemical reaction.
Internal energy	The energy stored inside a system by the particles (atoms and molecules) that make up the system. Internal energy is the total kinetic energy and potential energy of all the particles .
Kinetic energy	Energy stored within moving objects (e.g. particles).
Potential energy	Energy stored in particles because of their position . The further apart particles are, the greater the potential energy .
Specific heat capacity	The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius .
Temperature	The average kinetic energy of the particles .
Specific latent heat	The amount of energy required to change the state of one kilogram of the substance with no change in temperature .
Latent heat of fusion	Energy required to change state from solid to liquid.
Latent heat of vaporisation	Energy required to change state from liquid to vapour (gas).
Gas Pressure	The force exerted by gases on a surface as the particles collide with it. As temperature increases, gas pressure increases if the volume stays constant.

Solid Liquid Gas

Section 2: Important equations – you will be given the equation in the exam BUT you must learn the units and know how to use the equation Calculation Equation (given on equations Units (must learn) Symbols sheet) Density = kilograms / metre³ (kg/m³) Density = mass $\rho = \underline{m}$ Mass = kilograms (kg) Density volume v Volume = $metres^{3}$ (m³) Energy - Joules (J) Energy for change of state = Specific E = m LMass – kilograms (Kg) Latent Heat mass x specific latent heat Latent heat – joules per kilogram (J/kg)140] е 120 d 100 Temperature (°C) 80 Heating curve 60 С for water 40 20 b -20 а Section 3: Explaining a heating curve Particles are closely packed, fixed and arranged in regular layers. As more energy is a. Solid absorbed the kinetic energy and therefore the internal energy of the material increases. Temperature doesn't change. Energy is used to weaken the forces between **b.** Melting particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases. Particles are touching but no longer arranged regularly. They are above to move. As more energy is absorbed the kinetic energy and therefore the internal energy of c. Liquid the material increases. Temperature doesn't change. Energy is used to weaken the forces between **d.** Evaporation particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases. Particles move randomly. As more energy is absorbed the particles move more e. Gas guickly and the temperature increases.

Physics 4: Aton	nic Struct	ure				Section 4: N	Nuclear Radiation						
Section 1: Key Ter	ms					Radiation	Range in air	Absorbed by	Ionizing Power	Product emitted when nuclei decay			
Atom	The smalle overall elec	overall electrical charge. Very small, radius of 0.1nm.					Short – up to 5cm	Paper and skin	Very High	2 protons and 2 neutrons			
Isotope	An atom of	An atom of the same element with different numbers of neutrons . When an unstable nucleus changes to become more stable and gives out radi					Medium – about	About 5mm of	Medium	Flectron			
Radioactive decay	Random.						1m	aluminium.	riculuii				
Radioactive activity	The rate at	which decay occur	s . Measured in b	ecquerel	s (Bq).	Gamma	Many kilometres	Several	Low	Electromagnetic			
Count rate	Number of	decays recorded ea	ch second by a G	Geiger-Mul	ler tube.	Gamina	Many Kiometres	lead.	LOW	wave			
Half life	The time it Or, The time it fall to half	takes for the number takes for the count its initial level.	er of nuclei of th t rate (or activity)	ne isotop) from a sa	e in a sample to halve ample containing the isotope to	Section 5: N	Nuclear Decay Equ	ations $\rightarrow \frac{215}{84}Po$ +	4 ₂ He				
Contamination	The unwar liquids, with	ted presence of ma the body/ on the skin	terials containi	ng radioa	active atoms e.g. within	Alpha decay	In alpha decay new element fo	a helium nucleus (2 rmed has:	protons and 2 neut	rons) is emitted. The			
Irradiation	When an ob	ject is exposed to ra	diation. The ob	ject does	not become radioactive itself.		 A mass num An atomic nu 	ber that has decreas umber that has decr	sed by 4. eased by 2.				
Ionisation	Radiation can ionize by removing electrons from atoms to form ions . If this happens in DNA it could lead to a mutation that causes cancer .						¹⁴ ₆ C →	$\frac{14}{6}C \rightarrow \frac{14}{7}N + \frac{0}{1}e$					
Peer review	The checki	ng of scientific resu	Its by other scie	ntific exp	oerts.								
Section 2: Propert	ies of Sub-A	tomic Particles			Mass number – the	Beta decay	In beta decay a	In beta decay a neutron turns into a proton. An electron is emitted. The new					
Sub-atomic particle	Mass	Charge	Position in	Atom	and neutrons		 A mass number that stays the same. An atomic number increases by 1. 						
Proton	1	+1	Nucleus	5		Gamma decay There are no changes to the nucleus when				gamma ravs are emitted.			
Neutron	1	0	Nucleus	5				5					
Electron	very smal	-1	Orbiting in s	snells	▲ ــــــــــــــــــــــــــــــــــــ	Section 6: F	inding Half Life						
Plum Pudding	The plum pudding model shows that the atom is a ball of positive charge with negative electrons embedded in it. Was incorrect .			Energy Absorpt	Atomic number – the number of protons (the number of electrons is the same in an atom) Energy levels: Absorption of radiation may		80 70 60 50 40 30		23	 Find the initial count rate. Half that value. Draw a line across 			
Nuclear Model	Rut Neutron a Co Electron and Proton the	herford's scattering exertral area of positive lear model has a posi electrons in shells trons were discovered nucleus.	periment found charge. The itive nucleus Later, I and included in	lead to electrons moving further from the nucleus (higher energy level). Emission of radiation may lead to electrons moving closer to the nucleus (lower energy level).		Activity o	20 10 0 3 6 Tin	9 12 15 18 ne (days)	21 24 27 30	and then down. This is the half life of the isotope.			

Physics 5: Forces					Section 3: Elasticity				
Section 1: Key terr	ns			Elastic deforma	ation	Occurs when a spring is stretched and can then return to its			
Scalar	A value with magnitud	le (size) only, e	.g. speed, distance.			Original length.			
Vector	A value with magnitud	le (size) and di i	rection, e.g. all forces, displacement, velocity.	Inelastic deform	mation	permanently altered.			
Contact force	Force between objects	that are touchin	g e.g. friction, air resistance.			The length a spring can be stretched before it no longer is			
Non-contact force	Force between separa	te objects e.g. g	pravitational force, magnetic force.	Limit of proport	tionality	able to return to its original length. Beyond the limit of			
Weight	The force of gravity a	acting on an obj e	ect's mass. Measured using a newtonmeter.			proportionality, a force-extension graph is curved.			
Centre of mass	The single point at whether the single point at whether the second sec	nich the object's	weight appears to act.						
Resultant force	A resultant force is a si object.	ngle force that	has the same effect as all the forces acting on an						
Work done	None Work is done when an object is moved through a distance . When work is done against friction there is a temperature rise .					Limit of proportionality			
Momentum (HT)	Moving objects with ma	ass have moment	um. Momentum is "mass in motion".	Vew		Force-extension graph			
Conservation of momentum (HT)	In a closed system, the momentum after the	total momentu event.	IM before an event is equal to the total	Force (I	E	xtension in			
Section 2: Importa know how to use the	nt equations – you will equation	be given the equ	ation in the exam BUT you must learn the units and		p fc	roportional to prce			
Equation (given	on equations sheet)	Symbols	Units (must learn)						
			Weight – newtons (N)						
weight = mass x gra	ivitational field strength	vv = m g	Mass – kilograms (kg)		Extension (metres)				
			GFS – newtons per kilogram (N/kg)	Section 4: Forces and Braking					
Work done =	force x distance	W = F s	Work done – joules (J)	Reaction time	The time i tiredness	ime it takes for a driver to react , typically 0.2-0.9s . Affected by ness , drugs , alcohol and distractions .			
Former anning a		E ka	Force – newtons (N)	Thinking		The distance a vehicle travels while a driver is reacting .			
Force = spring c	onstant x extension	F = к е	Distance – metres (m)	distance	The distai				
			Spring constant – newtons per metre (N/m)	Buoling distant	The dista	nce a vehicle travels under braking. Affected by weather			
Distance =	speed x time	s = v t	Extension – metres (m)	Braking distant	of a vehicle	e.			
Acceleration =	change in velocity	a = <u>∆v</u>	Distance – metres (m)	Stopping	The stoppi	ng distance of a vehicle is the sum of the distance the vehicle			
	time taken	t	Speed – metres per second (m/s)	distance	distance it	travels during the driver's reaction time (thinking distance) and the distance it travels under the braking force (braking distance).			
		F	Time – seconds (s)		When the	brakes are pressed work done by the friction force between			
Resultant force =	mass x acceleration	r = m a	Acceleration = metres per second squared (m/s ²)		the brakes	the brakes and the wheel reduces the kinetic energy of the vehicle ar			
Flastic Potential F	$peray = 0.5 \times spring$		Velocity = metres per second (m/s)	Braking force	the tempe	erature of the brakes increases. The greater the speed of a			
constant	x Extension ²	$E_{e} = 0.5 \text{ k } e^{2}$	Energy – Joules (J)		decelerat	ions may lead to loss of control or overheating of the brakes.			

Section 5a: Mo	tion				Distance-time	graph	Velocity-time graph			
Displacement	The distance an objec quantity.	t moves and the dire	ction in which it o	ccurs. A vector	Constant speed - straight line		Constant speed - horizontal line			
Velocity	The speed of an object	: in a particular dire	ection.		Accelerating - curved line upwa	Accelerating - straight line with velocity increasing				
Acceleration	The change of an object near the surface of the	t's speed in a certain ne Earth its accelerat	amount of time. I tion will be 9.8m	f an object is falling / s².	Decelerating - curved line goin	g towards horizonta	Decelerating - straight line with velocity decreasing			
Terminal velocity	, The maximum speed object (e.g. gravity) is	of a moving object. (Occurs when the f all forces (e.g. air	orce moving an resistance).	Stationary - horizontal line	Stationary - horizontal line on x-axis (velocity = 0)				
Circular motion (HT)	An object moving in a is because the direction velocity is a vector quar	circle has constant in which the object is ntity that measures di	speed but changes s moving is constant rection and speed.	ging velocity . This ntly changing, and	Gradient of line can be calculat	ed to give speed	Moving backwards - below x-axis Gradient of line can be calculated to give acceleratior			
Section 5b: Typ	pical Values of Speed					5 1	or deceleration			
	Walking	1.5 m	ı/s	Section 7: Vecto	or Diagrams (HT)	ADiatana				
	Running	3 m,	/s	Determine the res	ultant of two vectors using the	500 in m.	Decelerating			
	Cycling	6 m,	/s	parallelogram met	hod. When drawn to scale, the	1 1				
So	ound in air	330 n	n/s	angle (direction) c	of the vectors can be measured	400				
Section 6: New	rton's Laws					300	Accelerating			
Newton's First Law	The velocity of an object is acting on the object. If there is no resultant f - Remain stationary if - Continue at a consta	e velocity of an object will only change if a resultant force acting on the object. here is no resultant force the object will: Remain stationary if it was not moving. Continue at a constant speed if it was already moving.			velocity of an object will only change if a resultant force cting on the object. ere is no resultant force the object will: Remain stationary if it was not moving. Continue at a constant speed if it was already moving.			à	200	dy speed Time in secs.
Newton's Second Law	The acceleration of an obj acting on the object, and object. i.e. Force = mass x accele	e acceleration of an object is proportional to the resultant force ing on the object, and inversely proportional to the mass of the ect. Force = mass x acceleration.		θ	0 t	10 20	30 40 50 60 70 80 90 100 110 120			
Newton's Third Law	Whenever two objects in other are equal and opp	nteract, the forces t osite.	hey exert on each		· · · · · · · · · · · · · · · · · · ·	6	Flat = Constant speed Negative gradient = Deceleration			
Inertia (HT)	The tendency of objects of uniform motion .	The tendency of objects to continue in their state of rest or of uniform motion .				Grad	tient = acceleration			
Section 8: HT e	quations – you will be give	n the equation in the	exam BUT you mu	st learn the units and	know how to use the equation	s city				
Calculation	Equation (given on e	quations sheet)	Symbols	Unit	s (must learn)		+			
Momentum	Momentum = ma	ss x velocity	ρ = m v	Momentum – kilogra Mass – kilograms (kg	ms metres per second (kg m/s)	1	Area under curve = Distance travelled			
Uniform acceleration	Final velocity ² – initia acceleration x	velocity ² = 2 x distance	$v^2 - u^2 = 2 a s$	Velocity = metres per Acceleration – metre	, er second (m/s) es per second squared (m/s²)	0 0 1	2 3 4 5 6 7 8 9 10 11 Time (seconds)			

Physics 6: Waves	
------------------	--

Section 1: Desc	ribing Waves
Amplitude (3)	The maximum displacement of a point on a wave away from its undisturbed position .
Wavelength (4)	The distance from a point on one wave to the equivalent point on the next wave .
Frequency	The number of waves passing a point each second.
Longitudinal	Oscillations are along the same direction as the direction of travel e.g. sound waves.
Transverse	Oscillations are at right angles to the direction of travel e.g. water waves, all electromagnetic waves.
Period	The time needed for one wave to pass a given point.
Compression (2)	Area in a longitudinal wave where particles are closest together.
Rarefaction (1)	Area in a longitudinal wave where particles are furthest apart.
Absorb	When the energy of an EM wave is taken up by an object .
Transmit	When a wave is able to pass through a material.
Reflect	The wave bounces off a surface ; the angle of incidence is equal to the angle of reflection .
Refract	The wave changes direction when it enters a medium of different density where it has a different speed.

Section 4b: Refraction Diagrams (HT) Section 4a: Using a Ripple Tank to Study Waves

2) 3)

Medium it can

travel through

Type of wave

Wavelength

- Count the number of waves passing a point in 10 1) seconds
 - Divide this number by 10 to get the **frequency** Take a photo of the waves
- Measure the length of 10 waves 4)
- 5) Divide this number by 10 to get the **wavelength**
- Calculate the **wave speed** using your answers to 6) parts 2 & 5. Wave speed = frequency x wavelength

Anything, even a

vacuum (space).

Transverse

Very short

Refraction

wave front diagram

	The collective name for all types of EM radiation. They a	r
	all transverse waves that travel at 300,000,000 m/s.	
┥		

normal

Refraction

glass block

normal

ray diagram

Solids, liquids, gases	Long wa	→ S	 Short wavelength 					
	Badia			Visible				
Longitudinal	waves	Microwaves	Infrared	light	Ultraviolet	X-rays	Gamma rays	
Longer	Low freq	Low frequency						

			Section 5b:	Section 5b: Uses and Risks of EM Radiation			
			3 4 4 distance	EM Wave	Use	Why it's suitable (HT)	Risks
VVV		a	implitude	Radio Waves	Television and radio	Reflected by ionosphere so can broadcast over long distances .	
Lon	gitudinal Wave		Transverse Wave		Satellite communications,	Able to pass through the	
tion 2: Measuring the Speed of Sound			Microwaves	Microwaves cooking food	atmosphere to satellites . Has a heating effect.		
Measure the distance to a building.			Infrarod	Infrared Electrical heaters, cooking	Has a heating effect. Emitted by		
Fire a st	arting pistol and start	a timer.		Innareu	food, infrared cameras	objects so can be detected.	
Stop the timer when the echo is heard.				Visible Light	Fibre optic communications	Able to pass along a cable by total internal reflection .	
Half your value for time and Work out the speed using distance divided by time.			ime.			Premature skin ageing.	
tion 3: I	mportant Equations –	given in e	xam but must learn units	Ultraviolet	Energy efficient lamps, sun	Increases amount of melanin	increase risk of skin cancer
lculation	Equation	Symbols	Units		tanning	(brown pigment) in skin .	(some can ionize)
ve speed	Wave speed = frequency x wavelength	$v = f \lambda$	Wave speed - metres per second (n	n/s) X-Rays	Medical imaging and treatments	Absorbed by bone but transmitted through soft tissue.	Ionizing – can cause mutation of genes and cancer
quency	Period = 1 / frequency	T = 1/f	Wavelength - metres (m) Time – seconds (s)	Gamma Rays	Medical imaging and treatments	Able to pass out of body and be detected by gamma cameras . Can kill cancerous cells .	Ionizing – can cause mutation of genes and cancer

4

Calculation

Frequency

Wave speed | Wave speed =

Section 2: Measuring the Speed of Sound 1 **Measure** the **distance** to a building. 2 Fire a starting pistol and start a timer. 3 **Stop the timer** when the **echo** is heard.

Section 3: Important Equations – given in exam but must

Physics 7: Magnetism and Electromagnetism

Section 1: Magnetism Key Terms			
Pole	The places on a magnet where the magnetic forces are strongest .		
Magnetic Field	The area around a magnet where a force acts on another magnet or magnetic material.		
Repel	Occurs when two like poles are brought close together. The magnets push apart .		
Attract	Occurs when two opposite poles are brought close together. The magnets move together .		
Permanent magnet	A magnet that produces its own magnetic field .		
Induced magnet	A magnetic material that becomes a magnet when it is placed in a magnetic field . When removed from the field it quickly loses its magnetism .		
Magnetic material	There are four magnetic materials: iron, steel, cobalt and nickel.		
Compass	Compasses contain small bar magnets which points to the north pole of the Earth's magnetic field .		

Section 3: Increasing the f	orce of	(HT) A m	
A Solenoid	A Motor (HT)	case the l	
Add an iron core	Increase the number of coils of wire	of the wir experience	
Increase the number of coils of wire	Increase the strength of the magnetic field	upwards.	
Increase the current	Increase the current		
Move the magnetic material/ magnet closer to the solenoid	1		

Section 2: Electromagnetism Key Terms				
Solenoid	A coil of wire that will create a magnetic field when current is passed through it. The magnetic field inside the solenoid is strong and uniform . It acts in the same way as a bar magnet.			
Electromagnet	A solenoid containing an iron core which increases its strength.			
Motor effect (HT)	When a conductor carrying a current is placed in a magnetic field , the magnet producing the field and the conductor exert a force on each othe r. This can be used to create a motor.			
Fleming's Left Hand Rule (HT)	A rule that shows the relative direction of the current , force and magnetic field in the motor effect.			

(HT) Fleming's Left Hand Rule. Align fingers to the field and the direction of the current to work out the way the wire moves.

otor. In this left hand part re would ce a force	N
Commutator and Carbon Brushes ∑	

Wire Coil (the conductor)

S

Section 4: Equations HT – you will be given the equation in the exam BUT you must learn the units and know how to use the equation						
Calculation	Equation (given on equations sheet)	Symbols Units (must learn)				
Force on a current-carrying wire	Force = magnetic flux density x current x length	F = B I I	Force – Newtons (N) Magnetic flux density – Tesla (T) Current – Amps (A) Length – metres (m)			