

# Physics Equations Sheet GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)

### HT = Higher Tier only equations

| $E_k = \frac{1}{2} m v^2$          |
|------------------------------------|
| $E_e = \frac{1}{2} k e^2$          |
| $E_p = m g h$                      |
| $\Delta E = m \ c \ \Delta \theta$ |
| $P = \frac{E}{t}$                  |
| $P = \frac{W}{t}$                  |
|                                    |
|                                    |
| Q = I t                            |
| V = IR                             |
| P = VI                             |
| $P = I^2 R$                        |
| E = P t                            |
|                                    |

|    | energy transferred = charge flow × potential difference                                                                                     | E = Q V                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| нт | potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil | $V_p I_p = V_s I_s$      |
|    | density = $\frac{\text{mass}}{\text{volume}}$                                                                                               | $\rho = \frac{m}{V}$     |
|    | thermal energy for a change of state = mass × specific latent heat                                                                          | E = m L                  |
|    | weight = mass × gravitational field strength                                                                                                | W=m g                    |
|    | work done = force × distance (along the line of action of the force)                                                                        | W = F s                  |
|    | force = spring constant × extension                                                                                                         | F = k e                  |
|    | distance travelled = speed × time                                                                                                           | s = v t                  |
|    | acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$                                                                        | $a = \frac{\Delta v}{t}$ |
|    | (final velocity) <sup>2</sup> – (initial velocity) <sup>2</sup> = 2 × acceleration × distance                                               | $v^2 - u^2 = 2 \ a \ s$  |
|    | resultant force = mass × acceleration                                                                                                       | F = m a                  |
| нт | momentum = mass × velocity                                                                                                                  | p = m v                  |
|    | $period = \frac{1}{frequency}$                                                                                                              | $T = \frac{1}{f}$        |
|    | wave speed = frequency × wavelength                                                                                                         | $v = f \lambda$          |
| нт | force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length                    | F = B I I                |

| Physics 1: Energy                                |                            |                                                                               |                                                                                                                                                                    |                                                                           | Section 3: Ene                                                                             | rgy Resour | ces                                                                                                                          |                                                                                          |                                                                                                                                |
|--------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Section 1: Energy stores and methods of transfer |                            |                                                                               |                                                                                                                                                                    |                                                                           | Resource                                                                                   | Renewable  | e? Uses                                                                                                                      | Advantages                                                                               | Disadvantages                                                                                                                  |
| Chemical stor                                    | re                         | Energy stored as chemica                                                      | icals waiting to <b>react.</b>                                                                                                                                     |                                                                           | Fossil Fuels                                                                               | Non-       | Electricity,                                                                                                                 | <b>Reliable</b> – electricity can be                                                     | Produces <b>carbon dioxide</b> , a                                                                                             |
| Kinetic store                                    |                            | Energy stored in objects                                                      | that <b>move.</b>                                                                                                                                                  |                                                                           |                                                                                            | Renewable  | heating                                                                                                                      | generated all of the time. Relatively <b>cheap</b> way of                                | greenhouse gas that causes <b>global</b> warming. Can produce sulphur                                                          |
| Gravitational                                    | Potential store            | Energy stored in objects                                                      | raised up agai                                                                                                                                                     | nst the force of <b>gravity.</b>                                          |                                                                                            |            |                                                                                                                              | generating electricity.                                                                  | dioxide, a gas that causes acid rain.                                                                                          |
| Elastic Potent                                   | ial store                  | Energy stored in an obje                                                      | ct that have be                                                                                                                                                    | een <b>stretched.</b>                                                     | Nuclear Fuel                                                                               |            | Electricity                                                                                                                  | Produces no carbon dioxide                                                               | ,                                                                                                                              |
| Internal store                                   | :                          | <b>kinetic</b> energy of the pa                                               | movement of particles. A combination of the particles and the <b>potential</b> energy of particles each other. Can be changed by <b>heating</b> / <b>cooling</b> . |                                                                           | Renewable                                                                                  |            | when generating electricity. <b>Reliable</b> – electricity can be generated all of the time.                                 | radioactive for thousands of years.  Expensive to build and decommission power stations. |                                                                                                                                |
| Nuclear store                                    |                            | Energy stored in the <b>nuc</b>                                               | <b>lei</b> of atoms.                                                                                                                                               |                                                                           | Bio Fuel                                                                                   | Renewable  | Heating, electricity                                                                                                         | Carbon neutral.  Reliable – electricity can be                                           | Production of fuel may damage ecosystems and create a                                                                          |
| Magnetic stor                                    | e                          | Energy stored in <b>magne</b>                                                 | ts that are att                                                                                                                                                    | racting or repelling.                                                     |                                                                                            |            | Ciccurcity                                                                                                                   | generated all of the time.                                                               | monoculture.                                                                                                                   |
| Electrostatic s                                  | store                      | Energy stored in <b>electric</b>                                              | c charges that                                                                                                                                                     | t are <b>attracting</b> or <b>repelling</b> .                             | Wind                                                                                       | Renewable  | Electricity                                                                                                                  | No CO <sub>2</sub> produced while                                                        | Unreliable – may not produce                                                                                                   |
| Mechanical tr                                    | ansfer                     | Energy transferred when                                                       | a <b>force move</b>                                                                                                                                                | es through a distance.                                                    |                                                                                            |            |                                                                                                                              | generating electricity.                                                                  | electricity during <b>low wind</b> .                                                                                           |
| Electrical tran                                  | sfer                       | Energy transferred when                                                       | a <b>charge mo</b>                                                                                                                                                 | ves.                                                                      |                                                                                            | D  -  -    | Electricity                                                                                                                  | No CO made and colding                                                                   | Expensive to construct.                                                                                                        |
| Wave transfe                                     | r                          | Energy transferred by <b>w</b> a                                              | gy transferred by <b>waves</b> e.g. sound & light.                                                                                                                 |                                                                           | Hydroelectricity                                                                           | Renewable  | , ,                                                                                                                          | <b>No CO<sub>2</sub></b> produced while generating electricity.                          | Blocks rivers stopping <b>fish migration</b> . <b>Unreliable</b> – may not produce                                             |
| Heat transfer                                    |                            | Energy transferred when                                                       | an object is <b>h</b>                                                                                                                                              | eated.                                                                    |                                                                                            |            |                                                                                                                              | generating electricity:                                                                  | electricity during <b>droughts</b> .                                                                                           |
|                                                  | its and know ho            | ations – you will be give<br>by to use the equation<br>en on equations sheet) | n the equation<br>Symbols                                                                                                                                          | in the exam <b>BUT</b> you must Units (must learn)                        | Geothermal                                                                                 | Renewable  | Electricity, heating                                                                                                         | Does not damage ecosystems. Reliable source of electricity generation.                   | Fluids drawn from ground may contain greenhouse gases such as CO <sub>2</sub> and methane. These contribute to global warming. |
| energy store                                     | Kinetic energy :           | = 0.5 x mass x velocity <sup>2</sup>                                          | $E_k = 0.5 \text{ m } v^2$                                                                                                                                         | Energy – Joules (J)<br>Mass – kilograms (kg)                              | Tidal                                                                                      | Renewable  | Electricity                                                                                                                  | No CO <sub>2</sub> produced while generating electricity.                                | Unreliable – tides vary. May<br>damage tidal ecosystem e.g.                                                                    |
|                                                  |                            | tential energy = mass x                                                       | $E_p = m g h$                                                                                                                                                      | <b>Velocity</b> – metres per second                                       |                                                                                            |            |                                                                                                                              |                                                                                          | mudflats.                                                                                                                      |
| energy store                                     | gravitational fie          | ld strength x height                                                          | , -                                                                                                                                                                | (m/s)                                                                     | Waves                                                                                      | Renewable  | Electricity                                                                                                                  | <b>No CO<sub>2</sub></b> produced while generating electricity.                          | <b>Unreliable</b> – may not produce electricity during <b>calm</b> seas.                                                       |
| Power                                            | Power =energy              | transferred ÷ time                                                            | P = <u>E</u><br>t                                                                                                                                                  | Gravitational field strength                                              | Solar                                                                                      | Renewable  | Electricity, heating                                                                                                         | No CO <sub>2</sub> produced while generating electricity.                                | Unreliable – does not produce electricity at night. Expensive to                                                               |
| Power                                            | Power = work o             | done÷time   · · · · · ·                                                       |                                                                                                                                                                    | <ul><li>Newtons per kilogram (N/kg)</li><li>Height – metres (m)</li></ul> |                                                                                            |            | Ticating                                                                                                                     | generating electricity?                                                                  | construct.                                                                                                                     |
| Efficiency                                       | •                          | = <u>useful energy output</u><br>total energy input                           |                                                                                                                                                                    |                                                                           | Section 4: Key Dissipation                                                                 |            | Energy becoming <b>spread out</b> instead of in a concentrated store. "Wasted" energy.                                       |                                                                                          |                                                                                                                                |
| Efficiency                                       | Efficiency = use           | ncy = <u>useful power output</u>                                              |                                                                                                                                                                    | Time – seconds (s)                                                        | Lubrication                                                                                |            | A method of reducing unwanted energy transfers by application of a <b>lubricant</b> (e.g.                                    |                                                                                          | fers by application of a <b>lubricant</b> (e.g.                                                                                |
| total power inpu                                 |                            | ai power input                                                                |                                                                                                                                                                    | Work done – Joules (J)                                                    |                                                                                            |            | oil) to reduce friction. Occurs in machines.  A method of reducing energy transfers by the use of insulators (non-conductive |                                                                                          |                                                                                                                                |
|                                                  |                            |                                                                               | 4 E - m a 40                                                                                                                                                       | openie neue capacity                                                      | material). Occurs in buildings.                                                            |            | use of <b>ilisulators</b> (11011-collauctive                                                                                 |                                                                                          |                                                                                                                                |
|                                                  | specific neat ca<br>change | pacity x temperature                                                          | $\Delta E = m c \Delta \theta$                                                                                                                                     | Joules per kilogram degrees                                               | Conservation of                                                                            | energy T   | he law that s                                                                                                                | tates that <b>energy cannot be c</b>                                                     | reated or destroyed.                                                                                                           |
|                                                  |                            |                                                                               |                                                                                                                                                                    | Centigrade (J/Kg°C)                                                       | Specific heat capacity The energy needed to raise <b>1kg</b> of a material by <b>1°C</b> . |            |                                                                                                                              |                                                                                          | by <b>1°C</b> .                                                                                                                |

| Physics 2: Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                        |                    | V, I and R in Ser                                       |                                                                                                            |                                             |                                                                                                                                                |                         | 5: IV Graphs         |                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Section 1: Circuit Symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Type of circuit    | Current                                                 | Pote                                                                                                       | ential Difference                           | Resistance                                                                                                                                     | Current                 | /                    | Fixed Resistor (Ohmic Conductor)                                                                                     |  |
| o— switch (open) — la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | amp                      |                    | The current is the                                      |                                                                                                            |                                             | The more resistors, the grea                                                                                                                   | ter                     | Potential            | Current and potential difference are <b>directly proportional</b> .                                                  |  |
| —o switch (closed) — fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | use                      | Series             | at every point in the circuit and in every component.   | / betwe                                                                                                    | ence is <b>shared</b><br>een the<br>onents. | the resistance. The total resistance of a circuit is the sun the resistance of each compone $\mathbf{R_{total}} = \mathbf{R_1} + \mathbf{R_2}$ |                         | difference           | Resistance is constant.                                                                                              |  |
| — cell — v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oltmeter                 |                    | The <b>total current</b> through the whole              |                                                                                                            | ootential<br>ence across each               | Adding more resistors in para decreases resistance. The to                                                                                     |                         |                      | <b>Filament Lamp</b> Resistance of a filament lamp is                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ammeter                  | Parallel           | circuit is the sum of the currents through the separate | of comp                                                                                                    | onent is the                                | resistance of two resistors is I<br>than the resistance of<br>the smallest individual                                                          |                         | Potential difference | <b>not constant</b> . As temperature increases, resistance increases.                                                |  |
| diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                    | components.                                             |                                                                                                            |                                             | resistor.                                                                                                                                      |                         |                      | more, increasing collisions with electrons.                                                                          |  |
| resistor the transfer of the t | hermistor                | Section 6:<br>Live | The Three Core Brown colour. Co and other wires sh      | urrent flow                                                                                                |                                             | . Potential difference between t                                                                                                               | nis Current             | /                    | Diode/ LED The current through a diode                                                                               |  |
| variable resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .DR                      |                    |                                                         |                                                                                                            |                                             | e. Potential difference should be                                                                                                              |                         | Potential difference |                                                                                                                      |  |
| LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Earth              |                                                         | n colour. Potential difference of <b>OV</b> . Carries charge to Earth if the metal casing of an appliance. |                                             |                                                                                                                                                |                         | direction.           |                                                                                                                      |  |
| Section 2: Important Equations – given in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | exam but n               | nust learn ι       | ınits                                                   | Section 3:                                                                                                 | Key Terms                                   |                                                                                                                                                | Section 7:              | Mains Electric       | city                                                                                                                 |  |
| Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Symbols                  |                    | Units                                                   | Electric curr                                                                                              | ent The <b>flow</b> of                      | electric charge.                                                                                                                               | Alternating<br>Current  |                      | ent regularly changes direction ns electricity                                                                       |  |
| Charge flow = current x time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Q = I \times t$         | Charge fl          | ow - coulomb (C)                                        |                                                                                                            |                                             | difference between two points                                                                                                                  | Direct Curre            | The curr             | ent flows in one direction only                                                                                      |  |
| Potential difference = current x resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V = I \times R$         | Current -          | - amperes (A)                                           | Potential difference                                                                                       | when a cou                                  | circuit is the work done lomb of charge passes                                                                                                 |                         | LIK mains            | s is an <b>alternating current</b> of                                                                                |  |
| Power = potential difference x current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P = V x I                | Time – se          | conds (s)                                               | direrence                                                                                                  | between th<br>causes char                   | e points. Potential difference ge to flow.                                                                                                     | Mains Elect             |                      | d at a frequency of <b>50Hz</b> .                                                                                    |  |
| Power = current <sup>2</sup> x resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P = I^2 \times R$       | 1                  | difference –                                            | Resistance                                                                                                 |                                             | caused by anything that                                                                                                                        | National Gri            | ות ו                 | of <b>cables</b> and <b>transformers</b> linking ations to consumers.                                                |  |
| Energy transferred = power x time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E = P x t                | volts (V)          |                                                         | Resistance                                                                                                 | opposes the                                 | e flow of electric charge.                                                                                                                     |                         |                      |                                                                                                                      |  |
| Energy transferred = charge flow x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E = Q \times V$ Power – |                    |                                                         |                                                                                                            |                                             | rged that is able to move within ectrons or ions.                                                                                              | Step-up<br>Transforme   | transmis             | creases the potential difference for<br>Insmission across power cables. This<br>duces the current and therefore less |  |
| potential difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                    | Power – watt (W)  Energy = joules (J)                   |                                                                                                            | A circuit with take.                        | A circuit with only <b>one route</b> for charge to take.                                                                                       |                         | heat is le           | lost from the cables. This makes the Grid efficient.                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Lifeigy –          | Joures (J)                                              | Parallel                                                                                                   | A circuit with charge to tak                | more than one route for e.                                                                                                                     | Step-down<br>Transforme |                      | s the potential difference from s to 230V for use by consumers.                                                      |  |

# **Physics 3: Particle Model of Matter**

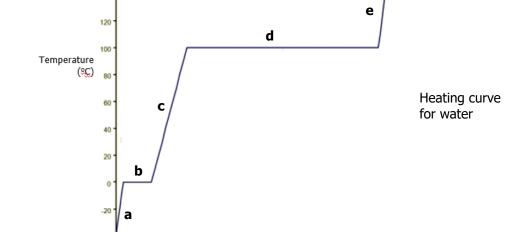
dense because the particles are closely packed.

**Section 1: Key Terms** 

Density

State of matter

| Change of state             | change from a solid to a liquid). Energy changes the state, not the temperature.                                                                                                         |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Physical change             | A change that can be <b>reversed</b> to recover the original material. <b>E.g. a change of state.</b>                                                                                    |  |  |  |  |
| Chemical change             | A change that <b>creates new products</b> . It <b>cannot easily be reversed</b> . E.g. a chemical reaction.                                                                              |  |  |  |  |
| Internal energy             | The energy stored inside a system by the particles (atoms and molecules) that make up the system. Internal energy is the total kinetic energy and potential energy of all the particles. |  |  |  |  |
| Kinetic energy              | Energy stored within moving objects (e.g. particles).                                                                                                                                    |  |  |  |  |
| Potential energy            | <b>Energy stored</b> in <b>particles</b> because of their <b>position</b> . The <b>further apart</b> particles are, <b>the greater the potential energy</b> .                            |  |  |  |  |
| Specific heat capacity      | The specific heat capacity of a substance is the <b>amount of energy</b> required to raise the temperature of <b>one kilogram</b> of the substance <b>by one degree Celsius</b> .        |  |  |  |  |
| Temperature                 | The average kinetic energy of the particles.                                                                                                                                             |  |  |  |  |
| Specific latent heat        | The amount of energy required to change the state of one kilogram of the substance with no change in temperature.                                                                        |  |  |  |  |
| Latent heat of fusion       | Energy required to change state from solid to liquid.                                                                                                                                    |  |  |  |  |
| Latent heat of vaporisation | Energy required to change state from liquid to vapour (gas).                                                                                                                             |  |  |  |  |
| Gas Pressure                | The <b>force</b> exerted by gases on a surface as the <b>particles collide</b> with it. <b>As temperature increases</b> , <b>gas pressure increases</b> if the volume stays constant.    |  |  |  |  |
|                             | Sublimation                                                                                                                                                                              |  |  |  |  |
| Falid                       | Melting Evaporation Condensation                                                                                                                                                         |  |  |  |  |
| Solid                       | Liquid Gas                                                                                                                                                                               |  |  |  |  |


How much mass a substance contains compared to its volume. Solids are usually

When a substance **changes from one state of matter** to another (e.g., melting is the

The way in which the **particles are arranged** – solid, liquid or gas.

Section 2: Important equations – you will be given the equation in the exam BUT you must

| learn the unit          | learn the units and know how to use the equation         |                   |                                                                                                                                          |  |  |  |  |  |
|-------------------------|----------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Calculation             | Equation (given on equations sheet)                      | Symbols           | Units <b>(must learn)</b>                                                                                                                |  |  |  |  |  |
| Density                 | Density = <u>mass</u><br>volume                          | ρ = <u>m</u><br>v | Density = kilograms / metre <sup>3</sup> (kg/m <sup>3</sup> )<br>Mass = kilograms (kg)<br>Volume = metres <sup>3</sup> (m <sup>3</sup> ) |  |  |  |  |  |
| Specific<br>Latent Heat | Energy for change of state = mass x specific latent heat | E = m L           | Energy – Joules (J)<br>Mass – kilograms (Kg)<br>Latent heat – joules per kilogram (J/kg)                                                 |  |  |  |  |  |
|                         | 140                                                      |                   |                                                                                                                                          |  |  |  |  |  |



# Section 3: Explaining a heating curve

Particles are closely packed, fixed and arranged in regular layers. As more energy is a. Solid absorbed the kinetic energy and therefore the internal energy of the material increases.

- Temperature doesn't change. Energy is used to weaken the forces between **b.** Melting particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases.
- Particles are touching but no longer arranged regularly. They are above to move. As more energy is absorbed the kinetic energy and therefore the internal energy of **c.** Liquid the material increases.
- Temperature doesn't change. Energy is used to weaken the forces between **d.** Evaporation particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases.
- Particles move randomly. As more energy is absorbed the particles move more **e.** Gas quickly and the temperature increases.

## Physics 4: Atomic Structure

1

Very small

Section 3: Development of Atomic Model

Neutron

Proton

Neutron

Electron

Plum

Pudding

Nuclear Model

| Physics 4: Atomic Structure                                                                                                                                                  |                                                                                                                                                                                                                                            |                                                                                                                                                                            |                                  |                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|--|--|--|
| Section 1: Key Ter                                                                                                                                                           | ms                                                                                                                                                                                                                                         |                                                                                                                                                                            |                                  |                                                    |  |  |  |
| Atom                                                                                                                                                                         |                                                                                                                                                                                                                                            | The <b>smallest part of an element</b> that can exist. All substances are made of atoms. <b>No</b> overall <b>electrical charge</b> . <b>Very small</b> , radius of 0.1nm. |                                  |                                                    |  |  |  |
| Isotope                                                                                                                                                                      | An atom of the                                                                                                                                                                                                                             | same element w                                                                                                                                                             | ith <b>different numbers of</b>  | neutrons.                                          |  |  |  |
| Radioactive decay                                                                                                                                                            | When an unst Random.                                                                                                                                                                                                                       | able nucleus char                                                                                                                                                          | nges to become more sta          | able and gives out radiation.                      |  |  |  |
| Radioactive activity                                                                                                                                                         | The rate at w                                                                                                                                                                                                                              | hich decay occurs                                                                                                                                                          | s. Measured in <b>becquerel</b>  | s (Bq).                                            |  |  |  |
| Count rate                                                                                                                                                                   | Number of de                                                                                                                                                                                                                               | ecays recorded eac                                                                                                                                                         | <b>ch second</b> by a Geiger-Mul | ler tube.                                          |  |  |  |
| Half life                                                                                                                                                                    | The <b>time it takes</b> for the <b>number of nuclei of the isotope in a sample to halve</b> Or, The <b>time it takes for the count rate</b> (or activity) from a sample containing the isotope <b>to fall to half its initial level</b> . |                                                                                                                                                                            |                                  |                                                    |  |  |  |
| Contamination                                                                                                                                                                | The <b>unwanted presence of materials containing radioactive atoms</b> e.g. within liquids, with the body/ on the skin.                                                                                                                    |                                                                                                                                                                            |                                  |                                                    |  |  |  |
| Irradiation                                                                                                                                                                  | When an object                                                                                                                                                                                                                             | t is <b>exposed to ra</b>                                                                                                                                                  | diation. The object does         | not become radioactive itself.                     |  |  |  |
| Ionisation Radiation can ionize by <b>removing electrons from atoms to form ions</b> . If this happens in <b>DNA</b> it could lead to a <b>mutation that causes cancer</b> . |                                                                                                                                                                                                                                            |                                                                                                                                                                            |                                  |                                                    |  |  |  |
| Peer review The <b>checking of scientific results</b> by other <b>scientific experts</b> .                                                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                            |                                  |                                                    |  |  |  |
| Section 2: Propert                                                                                                                                                           | ies of Sub-Ato                                                                                                                                                                                                                             | mic Particles                                                                                                                                                              |                                  | Mass number – the                                  |  |  |  |
| Sub-atomic particle                                                                                                                                                          | Mass                                                                                                                                                                                                                                       | Charge                                                                                                                                                                     | Position in Atom                 | total number of <b>protons</b> and <b>neutrons</b> |  |  |  |

+1

0

-1

and electrons in shells. Later,

Was incorrect.

the nucleus.

atom is a **ball of positive charge** with

negative electrons embedded in it.

**Atomic number – the number of** 

Nucleus Orbiting in shells The plum pudding model shows that the

Nucleus

**protons** (the number of electrons is the same in an atom)

Rutherford's scattering experiment found a central area of positive charge. The nuclear model has a **positive nucleus** neutrons were discovered and included in

lead to electrons moving closer to the nucleus (lower energy level).

**Energy levels:** Absorption of radiation may

further from the nucleus (higher energy level). Emission of radiation may lead to electrons moving

**Section 4: Nuclear Radiation** 

Range in air

Short – up to

5cm

Medium – **about** 

**Radiation** 

Alpha

Beta

Activity counts per second

80

70

60

50

40

30

20

10

9

Time (days)

| 2000                         |                 | 1m                                               | aluminium.                   | 1.00.0                          | 2.000.0                 |  |
|------------------------------|-----------------|--------------------------------------------------|------------------------------|---------------------------------|-------------------------|--|
| Gamma                        | Many kilometres |                                                  | Several centimetres of lead. | Low                             | Electromagnetic<br>wave |  |
| Section 5: N                 | lucl            | ear Decay Equ                                    | ıations                      |                                 |                         |  |
| Alpha decay                  |                 | In alpha decay<br>new element fo<br>- A mass num | •                            | protons and 2 neut<br>sed by 4. | crons) is emitted. The  |  |
|                              |                 |                                                  |                              |                                 | on is emitted. The new  |  |
| Gamma decay                  | У               | There are no cl                                  | nanges to the nucleu         | ıs when gamma ray               | s are emitted.          |  |
| •                            |                 |                                                  |                              |                                 |                         |  |
| Section 6: Finding Half Life |                 |                                                  |                              |                                 |                         |  |

12 15 18 21 24 27 30

Absorbed by

Paper and skin

About 5mm of

**Product emitted** 

when nuclei decay

2 protons and 2

neutrons

**Electron** 

1. Find the initial count

Draw a line across

and then down.

4. This is the half life of

rate.

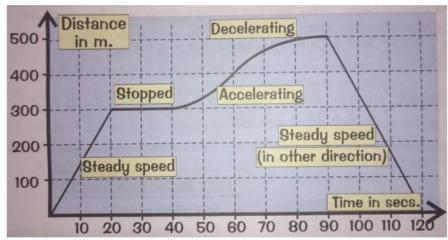
2. Half that value.

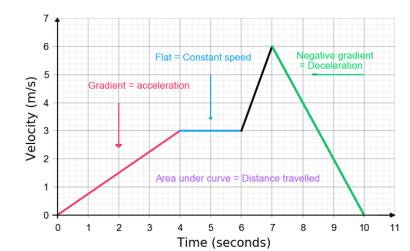
the isotope.

**Ionizing Power** 

**Very High** 

Medium


| Physics 5: Force                                                                                                                         | S                                               |                                                                     |                                                                   | Section 3: Elast                                          | ticity                                                                                                                                         |                                                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Section 1: Key terms                                                                                                                     |                                                 |                                                                     |                                                                   |                                                           | Elastic deformation  Occurs when a <b>spring is stretched</b> and can the                                                                      |                                                                                                                                                                                                                                                             |  |
| Scalar                                                                                                                                   | A value with <b>magnitud</b>                    | <b>le (size) only,</b> e.                                           | g. <b>speed, distance.</b>                                        |                                                           |                                                                                                                                                | original length.                                                                                                                                                                                                                                            |  |
| Vector                                                                                                                                   | A value with <b>magnitud</b>                    | le (size) and dir                                                   | ection, e.g. all forces, displacement, velocity.                  | Inelastic deforma                                         | ntion                                                                                                                                          | Occurs when a <b>spring is stretched</b> and its <b>length is permanently altered.</b>                                                                                                                                                                      |  |
| Contact force                                                                                                                            | Force between objects                           | that are <b>touchin</b>                                             | <b>g</b> e.g. friction, air resistance.                           |                                                           |                                                                                                                                                | The length a spring can be stretched before it no longer is                                                                                                                                                                                                 |  |
| Non-contact force                                                                                                                        | Force between <b>separat</b>                    | <b>te objects</b> e.g. g                                            | ravitational force, magnetic force.                               | Limit of proportio                                        | Limit of proportionality  able to return to its original length. Beyond the lim                                                                |                                                                                                                                                                                                                                                             |  |
| Weight                                                                                                                                   | The <b>force of gravity</b> a                   | cting <b>on an obje</b>                                             | ect's mass. Measured using a newtonmeter.                         |                                                           |                                                                                                                                                | proportionality, a force-extension graph is curved.                                                                                                                                                                                                         |  |
| Centre of mass                                                                                                                           | The <b>single point</b> at wh                   | nich the <b>object's</b>                                            | weight appears to act.                                            |                                                           |                                                                                                                                                |                                                                                                                                                                                                                                                             |  |
| Resultant force                                                                                                                          | A resultant force is a <b>si</b> object.        | ngle force that h                                                   | nas the <b>same effect as all the forces</b> acting on an         |                                                           |                                                                                                                                                |                                                                                                                                                                                                                                                             |  |
| Work done                                                                                                                                | Work is done when an of friction there is a tem |                                                                     | through a distance. When work is done against                     | rtons)                                                    | /                                                                                                                                              | Limit of proportionality                                                                                                                                                                                                                                    |  |
| Section 2: Important equations – you will be given the equation know how to use the equation Equation (given on equations sheet) Symbols |                                                 |                                                                     | Units (must learn)  Weight – newtons (N)                          | Force (Newtons)                                           |                                                                                                                                                | Extension in proportional to force                                                                                                                                                                                                                          |  |
| Weight = mass x grav                                                                                                                     | ritational field strength                       | W = m g                                                             | Mass – kilograms (kg)                                             |                                                           |                                                                                                                                                | ension (metres)                                                                                                                                                                                                                                             |  |
|                                                                                                                                          |                                                 |                                                                     | GFS – newtons per kilogram (N/kg)                                 | Section 4: Force                                          |                                                                                                                                                |                                                                                                                                                                                                                                                             |  |
| Work done = f                                                                                                                            | orce x distance                                 | W = F s                                                             | Work done – joules (J)                                            |                                                           |                                                                                                                                                | e it takes for a driver to react, typically <b>0.2-0.9s</b> . Affected by ss, drugs, alcohol and distractions.                                                                                                                                              |  |
| Force = spring co                                                                                                                        | nstant x extension                              | F = k e                                                             | Force – newtons (N)  Distance – metres (m)                        | Thinking                                                  |                                                                                                                                                | nnce a vehicle travels while a driver is reacting.                                                                                                                                                                                                          |  |
| Distance = speed x time s = v t                                                                                                          |                                                 | s = v t                                                             | Spring constant – newtons per metre (N/m)  Extension – metres (m) |                                                           |                                                                                                                                                | nnce a vehicle travels under braking. Affected by weather ns (e.g. rain or ice) and the conditions of the brakes and tyres le.                                                                                                                              |  |
| Acceleration = change in velocity time taken $a = \frac{\Delta v}{t}$                                                                    |                                                 | Distance – metres (m) Speed – metres per second (m/s)               | Stopping<br>distance                                              | Itravels during the driver's reaction time (thinking dist |                                                                                                                                                |                                                                                                                                                                                                                                                             |  |
| Resultant force = mass x acceleration F = m a                                                                                            |                                                 | Time – seconds (s)  Acceleration = metres per second squared (m/s²) | the brak                                                          |                                                           | brakes are pressed, <b>work done</b> by the <b>friction</b> force between s and the wheel <b>reduces the kinetic energy</b> of the vehicle and |                                                                                                                                                                                                                                                             |  |
|                                                                                                                                          | ergy = 0.5 x spring<br>Extension <sup>2</sup>   | $E_e = 0.5 \text{ k e}^2$                                           | Velocity = metres per second (m/s) Energy - Joules (J)            | vehic                                                     |                                                                                                                                                | the temperature of the brakes increases. The greater the speed of the brakes increases. The greater the speed of the brakes the greater the force needed to stop the vehicle. Large decelerations may lead to loss of control or overheating of the brakes. |  |

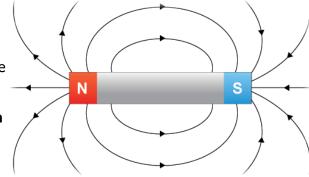

| Section 5a: Motio | Section 5a: Motion                                                                                                                                                            |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Displacement      | The <b>distance</b> an object moves and the <b>direction</b> in which it occurs. A <b>vector</b> quantity.                                                                    |  |  |  |  |  |
| Velocity          | The <b>speed</b> of an object in a <b>particular direction</b> .                                                                                                              |  |  |  |  |  |
| Acceleration      | The change of an object's speed in a certain amount of time. If an object is <b>fallin near the surface</b> of the Earth its <b>acceleration will be 9.8m/s<sup>2</sup></b> . |  |  |  |  |  |
| Terminal velocity | The <b>maximum speed</b> of a moving object. Occurs when the <b>force moving</b> an object (e.g. gravity) is <b>balanced by frictional forces</b> (e.g. air resistance).      |  |  |  |  |  |

| Section 5b: Typical Values of Speed |         |  |  |  |
|-------------------------------------|---------|--|--|--|
| Walking                             | 1.5 m/s |  |  |  |
| Running                             | 3 m/s   |  |  |  |
| Cycling                             | 6 m/s   |  |  |  |
| Sound in air                        | 330 m/s |  |  |  |
| Section 6: Newton's Laws            |         |  |  |  |

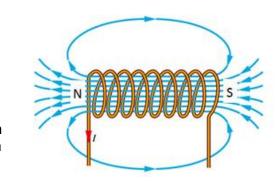
| Section 6: New         | toli 5 Laws                                                                                                                                                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Newton's First<br>Law  | The velocity of an object will only change if a resultant force is acting on the object.  If there is no resultant force the object will:  Remain stationary if it was not moving.  Continue at a constant speed if it was already moving. |
| Newton's<br>Second Law | The acceleration of an object is proportional to the resultant force acting on the object, and inversely proportional to the mass of the object. i.e. Force = mass x acceleration.                                                         |
| Newton's Third<br>Law  | Whenever <b>two objects interact</b> , the <b>forces</b> they exert on each other are <b>equal and opposite</b> .                                                                                                                          |
|                        |                                                                                                                                                                                                                                            |

| Distance-time graph                                 | Velocity-time graph                                                     |
|-----------------------------------------------------|-------------------------------------------------------------------------|
| Constant speed - straight line                      | Constant speed - horizontal line                                        |
| Accelerating - curved line upwards                  | Accelerating - straight line with velocity increasing                   |
| Decelerating - curved line going towards horizontal | Decelerating - straight line with velocity decreasing                   |
| Stationary - horizontal line                        | Stationary - horizontal line on x-axis (velocity = 0)                   |
|                                                     | Moving backwards - below x-axis                                         |
| Gradient of line can be calculated to give speed    | Gradient of line can be calculated to give acceleration or deceleration |






| Physics 6:                                                                                                                                                                                                   | Waves                                            |                                                                     |                                                                 | Section 4a: Usi                            | ng a Ripple Tank to                          | Study Waves      | Secti                                                                     | on 4b    | : Refractio               | n Diag        | rams     |                 |        |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------|---------------------------------------------------------------------------|----------|---------------------------|---------------|----------|-----------------|--------|-----------------------------|
| Section 1: De                                                                                                                                                                                                | escribing Waves                                  |                                                                     |                                                                 |                                            |                                              |                  |                                                                           | norr     | nal Dof                   | raction       |          |                 |        |                             |
| Amplitude (3)                                                                                                                                                                                                | The maximum dis undisturbed posit                | •                                                                   | <b>nt</b> of a point on a wave away from its                    |                                            |                                              |                  |                                                                           | 1        |                           | diagrar       | n        |                 |        |                             |
| Wavelength (4) The <b>distance</b> from a point on one wave to the <b>equivalent point</b> on the <b>next wave</b> .                                                                                         |                                                  |                                                                     |                                                                 |                                            |                                              |                  | 1                                                                         | glass    | block                     |               |          |                 |        |                             |
| Frequency                                                                                                                                                                                                    | The <b>number of wa</b>                          | ves pass                                                            | ing a <b>point each second</b> .                                | 1) Count the nu seconds                    | mber of waves passing                        | g a point in 10  |                                                                           |          | \ ;                       |               |          |                 |        |                             |
| Longitudinal                                                                                                                                                                                                 | Oscillations are ald travel e.g. sound v         |                                                                     | ame direction as the direction of                               | 2) Divide this nu                          | umber by 10 to get the of the waves          | frequency        |                                                                           |          |                           |               |          |                 |        |                             |
| Transverse                                                                                                                                                                                                   | Oscillations are at water waves, all el          |                                                                     | ngles to the direction of travel e.g.<br>gnetic waves.          | 5) Divide this nu                          | length of 10 waves<br>umber by 10 to get the |                  |                                                                           |          | normal                    | \             |          |                 |        |                             |
| Period                                                                                                                                                                                                       | The <b>time needed</b> f                         | or <b>one w</b>                                                     | ave to pass a given point.                                      |                                            | wave speed using y<br>Wave speed = freque    |                  | h                                                                         |          |                           |               |          | <del></del>     |        |                             |
| Compression (                                                                                                                                                                                                | 2) Area in a longitudi                           | nal wave                                                            | where particles are <b>closest</b> together.                    | <u> </u>                                   | erties of EM Waves                           |                  |                                                                           | Cookio   | n For The                 | Election      |          | dia Connet      |        |                             |
| Rarefaction (1)                                                                                                                                                                                              | ) Area in a longitudi                            | nal wave                                                            | where particles are <b>furthest</b> apart.                      | l                                          |                                              |                  |                                                                           |          | n 5a: The                 |               |          |                 |        | . Tl                        |
| Absorb                                                                                                                                                                                                       | When the energy of                               | f an <b>EM</b> v                                                    | wave is taken up by an object.                                  | Property                                   | EM Wave                                      | Sound Wa         |                                                                           |          | nective nam<br>Isverse wa |               |          |                 |        | n. They are                 |
| Transmit                                                                                                                                                                                                     | When a wave is able                              | to pass                                                             | through a material.                                             | Speed                                      | 300,000,000 m/s                              | around 330       | , 5                                                                       |          |                           | 1105          | ac crave | at <b>300/0</b> |        | -                           |
| Reflect                                                                                                                                                                                                      | The wave bounces equal to the angle              |                                                                     | rface; the angle of incidence is ction.                         | Medium it can travel through  Type of wave | Anything, even a vacuum (space).             | Solids, liquids, |                                                                           | Long wav | Microwaves                | Infrared      | Visible  | Ultraviolet     | X-rays | Short wavelength Gamma rays |
| Refract                                                                                                                                                                                                      | The wave <b>changes</b>                          | The wave <b>changes direction</b> when it enters a <b>medium of</b> |                                                                 |                                            | Transverse                                   | Longitudir       |                                                                           | waves    | Wilciowaves               | Illilaieu     | light    | Olliaviolet     | A-lays | Gaillilla lays              |
| Renact                                                                                                                                                                                                       | different density                                | where it h                                                          | as a different speed.                                           | Wavelength                                 | Very short                                   | Longer           |                                                                           | Low freq | uency ———                 |               |          |                 |        | High frequency              |
|                                                                                                                                                                                                              | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | disp                                                                | 3 4 wavelength distance                                         | EM Wave                                    | Satellite commu                              | dio              |                                                                           | R        | isks                      |               |          |                 |        |                             |
|                                                                                                                                                                                                              | itudinal Wave                                    |                                                                     | Transverse Wave                                                 | 7.6                                        | Electrical heater                            | s, cooking       |                                                                           |          |                           | $\rightarrow$ |          |                 |        |                             |
|                                                                                                                                                                                                              | easuring the Speed of<br>the distance to a build |                                                                     |                                                                 | Infrared                                   | food, infrared ca                            |                  |                                                                           |          |                           |               |          |                 |        |                             |
|                                                                                                                                                                                                              |                                                  |                                                                     |                                                                 | Visible Ligh                               | t Fibre optic comm                           | nunications      |                                                                           |          |                           |               |          |                 |        |                             |
| <ul> <li>2 Fire a starting pistol and start a timer.</li> <li>3 Stop the timer when the echo is heard.</li> <li>4 Half your value for time and Work out the speed using distance divided by time.</li> </ul> |                                                  |                                                                     | Ultraviolet                                                     | tanning                                    |                                              | increase         | Premature skin ageing,<br>ncrease risk of skin cancer<br>some can ionize) |          |                           |               |          |                 |        |                             |
| Section 3: In                                                                                                                                                                                                | nportant Equations –                             | given in e                                                          | exam but must learn units                                       | X-Rays                                     | Medical imaging treatments                   |                  |                                                                           | j – can  | cause mut                 | tation        |          |                 |        |                             |
|                                                                                                                                                                                                              | Equation  Wave speed = frequency x wavelength    |                                                                     | Units Wave speed - metres per second (mg Frequency - hertz (Hz) | (s) Gamma Ray                              | Medical imaging                              | and              |                                                                           | – can    | cause mut                 | ation         |          |                 |        |                             |
| Frequency F                                                                                                                                                                                                  | Period = 1 / frequency                           | T = 1/f                                                             | Wavelength - metres (m) Time - seconds (s)                      |                                            |                                              |                  |                                                                           |          |                           |               |          |                 |        |                             |


# **Physics 7: Magnetism and Electromagnetism**

| ·, o              |                                                                                                                                                                                   |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Section 1: Magnet | tism Key Terms                                                                                                                                                                    |  |  |  |
| Pole              | The places on a magnet where the magnetic forces are strongest.                                                                                                                   |  |  |  |
| Magnetic Field    | The <b>area</b> around a magnet where a <b>force acts</b> on another magnet or magnetic material.                                                                                 |  |  |  |
| Repel             | Occurs when two <b>like poles</b> are brought close together. The magnets <b>push</b> apart.                                                                                      |  |  |  |
| Attract           | Occurs when two <b>opposite poles</b> are brought close together. The magnets <b>move together</b> .                                                                              |  |  |  |
| Permanent magnet  | A magnet that produces its <b>own magnetic field</b> .                                                                                                                            |  |  |  |
| Induced magnet    | A magnetic material that <b>becomes a magnet</b> when it is placed in a <b>magnetic field</b> . When <b>removed</b> from the <b>field</b> it <b>quickly loses its magnetism</b> . |  |  |  |
| Magnetic material | There are four magnetic materials: <b>iron</b> , <b>steel</b> , <b>cobalt</b> and <b>nickel</b> .                                                                                 |  |  |  |
| Compass           | Compasses contain small bar magnets which <b>points</b> to the <b>north pole</b> of the <b>Earth's magnetic field</b> .                                                           |  |  |  |

The magnetic field around a bar magnet. The field lines always go from North to South



The magnetic field in a **solenoid** is concentrated **inside the coil in a uniform direction**, otherwise it acts in the same way as a bar magnet.



| Section 2: Electromagnetism Key Terms |                                                                                                                                                                                                                                       |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Solenoid                              | A <b>coil of wire</b> that will create a <b>magnetic field</b> when <b>current</b> is passed through it. The magnetic field <b>inside</b> the solenoid is <b>strong</b> and <b>uniform</b> . It acts in the same way as a bar magnet. |  |  |  |
| Electromagnet                         | A <b>solenoid containing an iron core</b> which increases its strength.                                                                                                                                                               |  |  |  |

| Section 3: Increasing the force of                               |
|------------------------------------------------------------------|
| A Solenoid                                                       |
| Add an <b>iron core</b>                                          |
| Increase the <b>number of coils</b> of wire                      |
| Increase the <b>current</b>                                      |
| Move the magnetic material/ magnet <b>closer</b> to the solenoid |