Section 4: Periodic Table Chemistry 1: Atomic Structure and the Periodic Table Elements in the **same vertical column** are in the same group. Elements in the same **Section 1: Key Terms** Group group have the same number of electrons in their outer shell, and therefore The **smallest part of an element** that can exist. All substances are made of Atom similar properties. atoms. No overall electrical charge. Very small, radius of 0.1nm. Elements in the **same horizontal row**. The atomic number increases by one moving An element **contains only one type of atom**. Found on the Periodic Table. Period Element across the period. There are about 100 elements. Metal Elements that react to form positive ions. Left and centre of periodic table (except H). Two or more elements chemically bonded with each other. Can only be Compound separated into the elements through chemical reactions. Non-Metal Elements that react to form negative ions. Right of periodic table. Contains two or more elements or compounds not chemically bonded. Made the modern periodic table by leaving gaps for undiscovered elements and Mixture Can be separated using physical methods e.g. by filtration, crystallisation, re-arranging some elements (Mendeleev could only measure relative atomic mass, Mendeleev distillation and chromatography. not atomic number) Filtration A process that **separates** mixtures of **insoluble solids and liquids**. Group A process that separates dissolved solids from liquids by evaporating the Crystallisation liquid to leave crystals. Distillation A process that separates a mixture of liquids based on their boiling points. Period A process that separates mixtures by how quickly they move through a Chromatography stationary phase (e.g. paper) An atom of the same element with different numbers of neutrons. Isotope Elements in the modern An average value of mass that takes account of the abundance of the periodic table are Relative atomic mass **isotopes** of the element. arranged by atomic (proton) number. **Section 2: Properties of Sub-Atomic Particles** Sub-atomic particle Mass Charge **Position in Atom** 95 96 97 Am Cm Bk Nucleus Proton +1**Section 3: Groups of the Periodic Table** 0 Nucleus Neutron Reactions **Properties Trends** Group Electron Very small -1 Orbiting in shells **Unreactive** and **Boiling point** Very unreactive as they have full outer Group 0 **Electron configuration**-Mass number - the do not form increases going down **Noble Gases** shells. Electrons fill the first energy total number of molecules. the group. Atomic number – the level (shell) first. protons and number of protons With water: Maximum electrons: neutrons (the number of electrons Metal + water → Metal hydroxide + hydrogen 2 in first shell Reactive is the same in an atom) 8 electrons in other shells Group 1 because they Reactivity increases With oxygen: Alkali Metals | can easily lose going down the group. Metal + oxygen → Metal oxide **Section 3: Development of Atomic Model** one electron. With chlorine: **Rutherford's** scattering experiment The plum pudding Nuclear Model Plum Pudding Metal + chlorine → Metal chloride model thought that the found a central area of positive charge. atom is a ball of The nuclear model has a **positive Reactivity decreases** Non-metals. positive charge with nucleus and electrons in shells. going down the group. A more reactive halogen can displace a Group 7 Form negative electrons Chadwick later discovered neutrons. **Boiling point** and less reactive halogen from a solution of its molecules with Halogens embedded in it. Was **Bohr** discovered the arrangement of melting point increase salt. pairs of atoms electrons in shells. incorrect. going down the group.

Section 3: Simple Covalent Molecules **Chemistry 2: Bonding, Structure and the Properties of Matter** Section 1: Bonding Key Terms An atom that is **charged** because it has **gained** or **lost electrons**. Ion The bond between two oppositely charged ions (metal and non-metal). H Ionic bond Occurs because of **electrostatic** attraction. The force that holds two oppositely charged ions together. A strong force. Electrostatic attraction Metals In ionic bonding, **metals lose electrons** to become **positively-charged** ions. Н Covalent bond In ionic bonding, non-metals gain electrons to become negatively-charged Non-metals ions. **Property of covalent** Giant lattice A large 3D structure that contains a lot of bonds. molecules A bond formed when **non-metals share electrons**. A **strong** bond. Low melting and boiling points Covalent bond There are only weak intermolecular forces between the (usually gases or liquids) **molecules. Not much energy** is needed to overcome these forces. Molecule A small group of atoms held together with covalent bonds. Not charged. Do not conduct electricity Covalent molecules are **not charged**. Polymer Very large covalent compounds with many repeating units. Section 4: Giant Covalent Structures Made of Carbon The **electrons** in the **outer shell** of metal atoms are **delocalised** and so are free to move through the whole structure. The sharing of delocalised Metallic bonding **Graphite** electrons gives rise to strong metallic bonds. A mixture of two or more elements, at least one of which is a metal. E.g. Alloy Each carbon forms 3 steel **bonds** to other carbon Section 2: Ionic Bonding atoms. Arranged in layers with weak intermolecular forces between layers. (2,8,1)Section 4a: Properties of Graphite **Property** Each carbon only **forms 3 bonds** so **one electron is delocalised**. These In ionic bonding, metals lose electrons Conducts electricity Two representations of a **giant ionic** to become positively-charged ions. electrons are free to move and carry charge through the structure. **lattice**. The lines represent ionic Non-metals gain these electrons to Only weak intermolecular forces exist between layers, so layers can easily bonds. Soft and slippery become negatively-charged ions. be rubbed off. **Property of ionic** Reason **Section 4b: Properties of Diamond** compounds **Property** There is a strong electrostatic force between the positive and Doesn't conduct negative ions in the giant lattice. A large amount of energy is High melting point Diamond doesn't contain delocalised electrons or ions. electricity needed to overcome this force. Each carbon bonds to 4 other carbon atoms with strong covalent bonds to Conduct electricity when Very hard **Ions are able to move** so there is a **flow of charged ions** (current). form a lattice. liquid/ molten Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form Do not conduct electricity High melting point **Ions are in fixed positions** so cannot flow. a lattice. A large amount of energy is needed to overcome all these bonds. when solid

Covalent bonding in carbon

dioxide

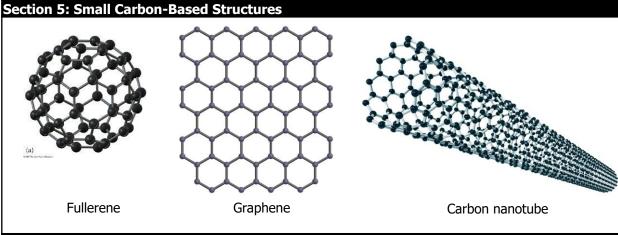
Weak

force

Diamond

atoms.

Reason


Reason

intermolecular

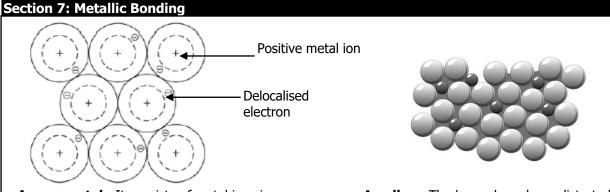
Reason

Each carbon forms 4

bonds to other carbon

Section 1: Properties of Metals Properties Structure Uses Hollow-shaped. Usually Very **strong**. Hollow so can hexagonal rings of Fullerene contain other chemicals within **Drug delivery**, **lubricants**. carbon atoms. E.g. Buckminsterfullerene (C₆₀) Very **strong**. **Has** A single layer of delocalised electrons so it is Electronics, composites. Graphene graphite. able to conduct electricity. **Cylindrical tubes** of Very **strong**, **light** and Nanotechnology, Carbon carbon atoms that are flexible. Has delocalised electronics, reinforcing

electrons so it is able to


(e.g. tennis rackets).

A polymer. The lines show covalent bonds. `n' is a large number. H H H N Polymers are held together by intermolecular forces (dashed lines)

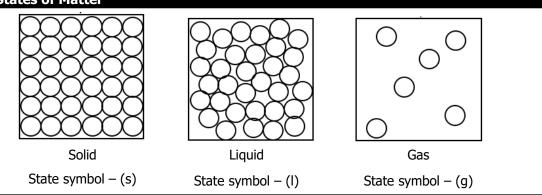
nanotube

very long compared to

Property	Reason		
II SOUG	Usually solid because the intermolecular forces between polymer		
Soliu	molecules are relatively strong.		

A pure metal. It consists of metal ions in layers with delocalised electrons.

An alloy. The layers have been distorted by the presence of other elements


7a Properties of Pure Metals

Property	Reason		
High melting points	Strong electrostatic forces between the positive ions and delocalised electrons. Requires a large amount of energy to overcome.		
Conduct electricity	Metals have delocalised electrons . These electrons are able to move through the structure and carry charge.		
Conduct heat	The delocalised electrons are able to move and transfer thermal energy through the structure.		
Malleable	The layers are able to slide over each other so the metal can be bent and shaped. The attraction between the positive ions and delocalised electrons prevents the metal from shattering.		

7b Properties of Alloys

Property	Reason			
I Harder than metalc	The layers are distorted by the presence of other elements. This prevents the layers from being able to slide over each other.			

Section 8: States of Matter

_ _.

Chemistry 3: Quanti	tative Chemistry	Section 2: Calculations and Examples			
Section 1: Bonding Key T	erms		Add up all the atomic masses in a formula.		
Law of conservation of mass	No atoms are lost or gained during a chemical reaction. The mass of the products is the same as the mass of the reactants. Some reactions appear to give a change in mass, but this is because a gas may have	Calculating relative formula mass (<i>M_r</i>)	e.g. H_2O . Mass of hydrogen = 1. Mass of oxygen = 16. (2x1) + 16 = 18, so M_r of H_2O = 18		
	escaped from the reaction container.		Percentage by mass in a compound = $\frac{\text{Mass of element}}{M_r \text{ of compound}}$ x100		
Relative atomic mass (A_r)	The average mass of an atom of an element compared to Carbon-12.	Percentage by mass in a	·		
Relative formula mass (M _r)	The sum of all the atomic masses of the atoms in a formula (e.g. H ₂ O).	compound	e.g. What is the percentage by mass of hydrogen in water?		
Uncertainty	The interval within which the true value can be expected to lie . E.g. $25^{\circ}\text{C} \pm 2^{\circ}\text{C}$ – the true value lies between 23°C and 27°C.		Percentage mass of hydrogen in water = $\frac{2}{18}$ x100 = 11.1%		
	Symbol equations should be balanced – they should have the same number of atoms of each element on each side.		Percentage uncertainty = <u>Uncertainty</u> x100 Quantity being measured		
Balanced Symbol Equations	e.g. Mg + $O_2 \rightarrow$ MgO This is NOT balanced (more Oxygen atoms on the left hand side)	Percentage uncertainty	e.g. What is the percentage uncertainty of a 50cm^3 measuring cylinder accurate to $\pm 2 \text{cm}^3$?		
	2Mg + O₂ → 2MgO This is a balanced symbol equation		Percentage uncertainty = $\frac{2}{50}$ x 100 = 4%		
Concentration	A measure of the number of particles of a chemical in a volume . Can be measured in g/dm ³ .		Volume in $dm^3 = \frac{\text{volume of liquid in cm}^3}{1000 \text{cm}^3}$		
Decimetre ³ (dm ³) A measurement of volume . Contains 1000cm³ .		Volume in dm ³	e.g. What is the volume in dm ³ of 500cm ³ of hydrochloric acid?		
Mole (HT) A measurement for the amount of a chemical. It is the mass (in grams) of 6.02 x 10²³ (the Avogadro constant) atoms of an element . Symbol: mol.			Volume in $dm^3 = \frac{500}{1000} = 0.5 dm^3$		
Balanced equation (HT)	Balanced symbol equations show the number of moles that react . e.g. Mg + 2HCl \rightarrow MgCl ₂ + H ₂ Shows one mole of magnesium reacting with two moles of hydrochloric acid to form one mole of magnesium chloride and one mole of hydrogen.	Number of moles (HT)	Number of moles = $\frac{\text{Mass of chemical}}{\text{Relative formula mass}}$ e.g. How many moles of water are there in 36g of H ₂ O?		
Limiting reactant (HT)	The reactant that is completely used up in a chemical reaction. It limits the amount of product formed.		Number of moles = $\frac{36}{18}$ = 2 moles		
Excess reactant (HT)	The reactant that is not completely used up in a chemical reaction. There is some reactant left at the end.		Concentration = Mass of solute Volume (in dm³)		
		Concentration of a solution (HT)	e.g. What is the concentration of a solution of hydrochloric acid which contains 100g of hydrochloric acid in 500cm ³ ?		
			Concentration = $\frac{100}{0.5}$ = 200g/dm ³		

Chemis	Chemistry 4: Chemical Changes					
Section 1: Key Terms						
Metal oxide		Metals react with oxygen to produce metal oxides. This is an oxidation reaction.				
Displacement reaction		A more reactive metal can displace a less reactive metal from a compound.				
Oxidation		themicals are oxidised if they gain oxygen in a reaction. Also, chemicals are oxidised if they lose electrons in a reaction. (HT)				
Reduction	า	Chemicals are oxidised if they lose oxygen in a reaction. Also, chemicals are oxidised if they gain electrons in a reaction. (HT)				
Acid		A chemical that dissolves in water to produce H ⁺ ions .				
Base		A chemical that reacts with acids and neutralises them. E.g. metal oxides , metal hydroxides , metal carbonate				
Alkali		A base that dissolves in water. It produces OH- ions in solution.				
Neutralisation		When a neutral solution is formed from reacting an acid and alkali . General equation: $H^+ + OH^- \rightarrow H_2O$				
рН		A scale to measure acidity/ alkalinity. A decrease of one pH unit causes a 10x increase in H+ ions. (HT)				
Strong acid (HT)		A strong acid is completely ionised in solution. E.g. hydrochloric , nitric and sulfuric acids.				
Weak acid (HT)		A weak acid is only partially ionised in solution. E.g. ethanoic , citric and carbonic acids.				
Section	2: Making a	a Soluble Salt				
1	Add solid metal, metal carbonate, metal oxide or metal hydroxide to an acid.					
2	Add solid un	ntil no more reacts.				
3	Filter off excess solid.					

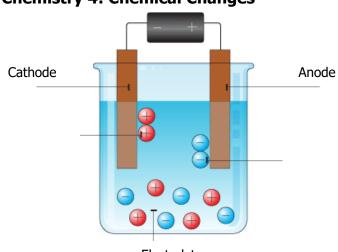
Add solid metal, metal carbonate, metal oxide or metal hydroxide to an acid.
Add solid until no more reacts .
Filter off excess solid.
Evaporate to remove some of the water.
Leave to crystallise .
Remove all water in a desiccator/ oven .

<u>The pH Scale</u> – can be measured using universal indicator or a pH probe

pH 0-6				pH 7			Alkaline pH 8-14							
На	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Section 3: Reactivity						
Element	Reaction	Reactivity				
Potassium	When potassium is added to water , the metal melts and floats. It moves around very quickly. The metal is also set on fire , with sparks and a lilac flame .	†				
Sodium	When sodium is added to water , it melts to form a ball that moves around on the surface. It fizzes rapidly .					
Lithium	When lithium is added to water , it floats. It fizzes steadily and becomes smaller.					
Calcium	Fizzes quickly with dilute acid.					
Magnesium	Fizzes quickly with dilute acid.					
(Carbon)						
Zinc	Bubbles slowly with dilute acid.					
Iron	Very slow reaction with dilute acid.					
(Hydrogen)						
Copper	No reaction with dilute acid.					

Section 4: Extracting Metals


Very unreactive metals e.g. Gold	Found naturally in the ground. Don't need extracting .			
Metals less reactive than carbon	Extracted by reduction with carbon .			
Metals more reactive than carbon	Extracted by electrolysis .			

Section 5a: Reactions of Acids					
With metal	Acid + Metal → Salt + Hydrogen				
With alkali	Acid + Metal Hydroxide → Salt + Water	(Neutralisation reaction)			
With metal oxide	(Neutralisation reaction)				
With carbonate	Acid + Metal Carbonate → Salt + Water + Carbon Dioxide (Neutralisation reaction)				

Section 5b: Salts

	Hydro chlor ic Acid forms chlor ide salts	
Salts	e.g. Hydrochloric acid + Zinc → Zinc Chloride + Hydroge Sulf uric Acid forms sulf ate salts	en
	Nitric Acids forms nitrate salts	

Chemistry 4: Chemical Changes

- Positive
- · Anode
- Negative
- ·Is
- · Cathode

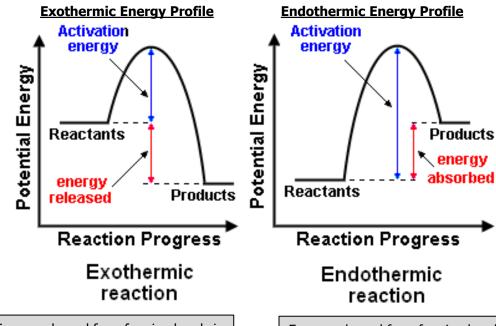
Electrolyte

Electrolysis	The process of splitting an ionic compound by passing electricity through it.
Electrolyte	An ionic compound that is molten (melted) or dissolved in water . The ions are free to move .
Electrode	An electrical conductor that is placed in the electrolyte and connected to the power supply .
Cathode	The electrode attached to the negative terminal of the power supply .
Anode	The electrode attached to the positive terminal of the power supply .

Section 8: What is discharged in electrolysis?

	· · · · · · · · · · · · · · · · · · ·		
Electrolyte	Cathode	Anode	
Molten Compound	Metal	Non-metal	
Dissolved compound (aqueous solution)	The metal if the metal is less reactive than hydrogen. Hydrogen is produced if the metal is more reactive than hydrogen.	Oxygen is produced unless the solution contains halide ions (chloride, bromide, iodide) when the halogen (chlorine, bromine, iodine) is produced.	

Section 9: Aluminium Electrolysis

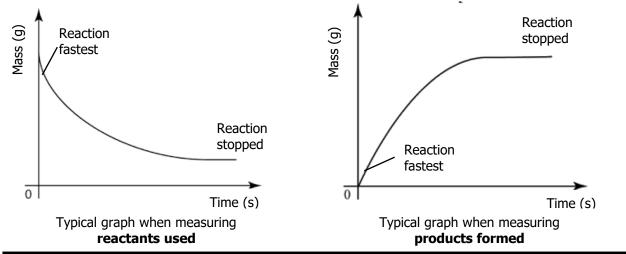

Section 7 Electrolysis key terms

Cryonice	money on energy costs.
Cathode	Positive Al^{3+} ions move to the cathode. Aluminium is produced. $Al^{3+} + 3e^{-} \rightarrow Al$
INDAD	Negative O^{2^-} ions move to the anode. Oxygen is made. $2O^{2^-} \rightarrow O_2 + 4e^-$ Wears away as the carbon anode reacts with oxygen to form carbon dioxide.

Aluminium oxide is dissolved in cryolite to lower its melting point. This saves

Chemistry 5: Energy Changes

Section 7 Energy	Section 7 Energy Changes Key Terms		
Conservation of energy	Energy is not created or destroyed , only transferred from one store to another		
Exothermic	A reaction that transfers energy to the surroundings so the temperature of the surroundings increases , e.g. combustion and neutralisation reactions. Used in self-heating cans and hand warmers .		
Endothermic	A reaction that takes in energy from the surroundings so the temperature of the surroundings decreases, e.g. thermal decomposition. Used in sports injury packs. The energy needed for particles to successfully react. Energy is needed to break bonds.		
Activation energy			
Breaking bonds			
Forming bonds	Energy is released when bonds are formed.		


Energy released from forming bonds is **greater than** the energy needed to break bonds. (HT)

Energy released from forming bonds is **less than** the energy needed to break bonds. (HT)

Chemistry 6: Rate and Extent of Chemical Change

Calculating rate of reaction:

Mean rate = $\underline{\text{amount of reactant used}}$ or Mean rate = $\underline{\text{amount of product formed}}$ time taken time taken

Section 1: Key terms Collision theory Reactions occur only when particles collide with enough energy.

Activation energy	The amount of energy particles need in order to react .
Catalyst	A chemical (or enzyme) that increases the rate of reaction without being used itself (therefore they are not included in an equation). They provide an alternative pathway for the reaction with a lower activation energy .

Concentration The **number of particles** in a certain **volume.**

Section 2: Factor	Section 2: Factors Affecting Rate				
Factor	Effect on Rate	Explanation			
Concentration of reactants	Increasing the concentration increases the rate of reaction.	Increases the chance of a collision as there are more particles.			
Pressure of gases	Increasing the pressure increases the rate of reaction.	Increases the chance of a collision as there are more particles.			
Surface area of solid reactants	Increasing the surface area increases the rate of reaction.	Exposes more of the solid so that there is a greater chance of collisions occurring.			
Temperature	Increasing the temperature increases the rate of reaction.	Increases speed at which particles move and makes collisions more energetic .			
Catalyst	Catalysts increase the rate of reaction.	Lowers the activation energy.			

Section 3: Reversible Reactions

Shown as: $A + B \rightleftharpoons C + D$

Reversible reaction

Exothermic

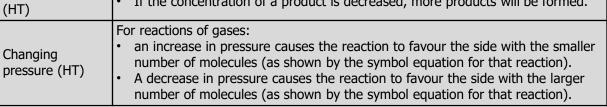
Le Chatelier's

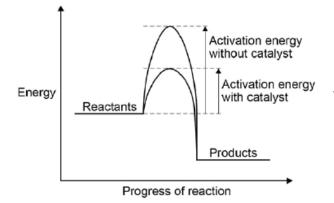
Principle (HT)

LXOCITETITIC	A reaction that releases energy to the environment.
Endothermic	A reaction that takes in energy from the environment.
	Equilibrium is reached when the forward and reverse reactions occur at exactly the same rate . Needs a sealed container .

then the system responds to counteract the change.

A reaction that **releases energy** to the environment


A reaction in which the **products can also form the reactants**.


If a system is at equilibrium and a change is made to any of the conditions,

If the concentration of a product is decreased, more products will be formed.

Section 4: Changing conditions at equilibrium

Changing temperature (HT)	If the temperature of a system at equilibrium is increased: the amount of products at equilibrium increases for an endothermic reaction the amount of products at equilibrium decreases for an exothermic reaction. If the temperature of a system at equilibrium is decreased: the amount of products at equilibrium decreases for an endothermic reaction the amount of products at equilibrium increases for an exothermic reaction.
Changing concentration	If the concentration of a reactant is increased, more products will be formed. If the concentration of a reactant is increased, more products will be formed.

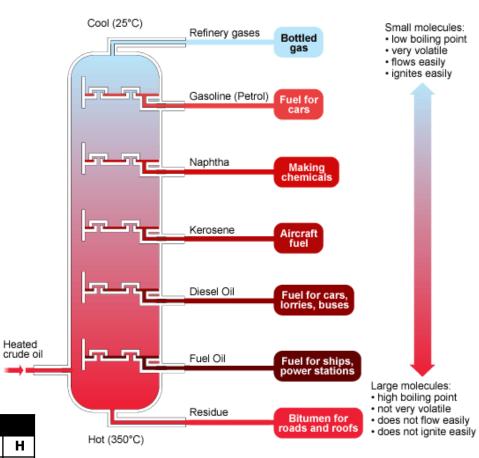
Energy profile diagram for a reaction with/ without a catalyst.

Chemistry 7: Hydrocarbons

Section 1: Key terms			
Crude oil	A mixture of hydrocarbons formed over millions of years from dead plankton subjected to pressure.		
Hydrocarbon	A molecule containing hydrogen and carbon atoms only .		
Alkane	A hydrocarbon containing only single bonds . Follows the formula C_nH_{2n+2} .		
Fractional distillation	The method of separating hydrocarbons based on their boiling point .		
Intermolecular force	Weak forces of attraction that exist between molecules.		
Boiling point	The temperature at which a liquid turns into a gas .		
Viscosity	The ability of a substance to flow .		
Flammability	The ability of a substance to burn or ignite .		
Combustion	A reaction between a fuel and oxygen that produces heat.		
Alkene	A hydrocarbon containing at least one double bond . Alkenes are more reactive than alkanes and are used to make polymers .		
Bromine water	A chemical that is brown/ orange in colour. If added to an alkene it reacts and changes to colourless . Alkanes do not produce a change in colour.		
Cracking	The process by which less-useful long-chain hydrocarbons are split to produce smaller, more useful molecules (an alkane and an alkene)		
Fraction	A fraction contains similar length hydrocarbons with a small range of boiling points.		
Section 2: Alkanes	Section 3: Fractional Distillation		
Seedon El Aikancs	Joseph St Fractional Distinction		

The crude oil is **heated** to 400°C.

Hot vapours **rise** up the column and **cool down**.


to the bottom of the column.

Section 2: Alkanes						
methane CH ₄	н-	H-C-H	-H			
ethane C ₂ H ₈	н-	H-C-H	H-0-H	-Н		
propane C ₃ H ₈	н-	H -C-H	H-C-H	H-C-H	-Н	
butane		H	H	H	H	

C₄H₁₀

	When the vapours cool to their boiling point they condense and flow out of the column.				С
	5	Those with lower boil	ing points rise further before cooling do	wn.	
	6	Refinery gases do not o	cool down to their boiling point so remain	as gases.	
	Section 4: Cracking				
	Cracking Method Process Temperature				
-H	Cā	atalytic Cracking	Fraction is heated in the presence of a zeolite catalyst .	500°C.	
	St	eam Cracking	Fraction is diluted with steam and heated .	850°C.	

Most fractions **evaporate** and become **vapours**. The residue doesn't boil and flows

<u>Complete Combustion of Alkanes Equations</u>: Note – the equation is balanced

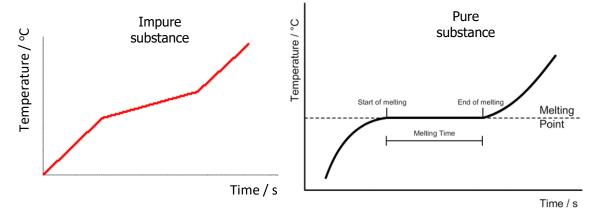
$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

Propane + Oxygen → Carbon Dioxide + Water

<u>Cracking Equations</u>: Note – the equation is balanced

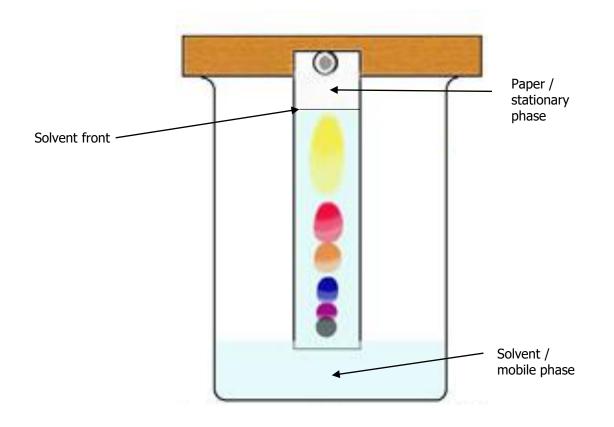
decane
$$\rightarrow$$
 heptane + propene $C_{10}H_{22}\rightarrow C_7H_{16}+C_3H_6$

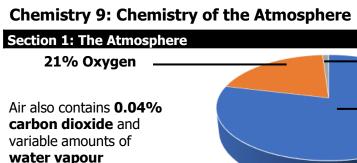
Large, less-useful Smaller, useful Useful alk**e**ne alk**a**ne alk**a**ne


Chemistry 8: Chemical Analysis

Section 1: Key terms	
Pure	A pure substance is a single element or compound , not mixed with any other substance.
Formulation	A mixture that has been designed as a useful product. Formulations are made by mixing the components in carefully measured quantities . Formulations include fuels , cleaning agents , paints , medicines , alloys , fertilisers and foods .
Melting point	The temperature at which a substance turns from a solid to a liquid.

Section 2: Impure and Pure Graphs


Impure substances do not melt at specific temperatures.


Pure substances do melt at specific temperatures (a horizontal line is produced).

Section 4: Testing for Gases			
Gas Procedure		Positive Result	
Hydrogen	Hold a lit splint at the end of a test tube producing gas.	Hydrogen burns with a pop noise.	
Oxygen	Hold a glowing splint in a test tube of the gas.	The splint relights if oxygen is present.	
Carbon dioxide	Bubble gas through a solution of limewater .	Carbon dioxide causes the limewater to turn milky .	
Chlorine	Place damp litmus paper in the gas.	The litmus is bleached white if chlorine is present.	

Section 3: Chromatography		
Chromatography	A method used to separate mixtures into their different chemicals.	
Solvent	The chemical that dissolves the sample in chromatography.	
Solvent front	The maximum distance the solvent moves up the paper.	
Stationary phase	The medium (e.g. paper) through which the mobile phase passes in chromatography .	
Mobile phase	The solvent (e.g. water) that carries the sample (e.g. ink) in chromatography .	
R _f value	A value (always less than 1) that shows how far the substance has moved compared to the solvent. Equation: $R_f = \frac{\text{distance moved by substance}}{\text{distance moved by solvent}}$	

Section 2a: Reduction of CO₂ by formation of deposits

Section 2: Formation of the Atmosphere

Atmosphere is mainly carbon dioxide with no oxygen.

Limestone

Global warming

Early

Atmosphere

Volcanoes erupt releasing **nitrogen** and water vapour. Water vapour condenses and forms the oceans. Some carbon dioxide dissolves in the oceans. Carbon dioxide is also locked in fossil fuels and sedimentary rocks.

4.6 – 3.6 Billion Years Ago

photosynthesis. They take in more carbon dioxide.

2.7-1.7 Billion Years

Ago

Plants evolve and release

oxygen through

78% Nitrogen

1% Argon

Coal was compressed to form coal. Plankton absorbed CO₂. Plankton died and were deposited in muds on the

Plants absorbed CO₂. They died and decayed. This layer of decaying plants

Oil and natural gas sea floor. They were covered over and compressed over millions of years. Shelled animals absorbed CO₂ to make their calcium carbonate shells. The

Section 3: Greenhouse Effect and Global Warming The process by which the temperature on Earth is kept high enough to support Greenhouse effect

remains of these animals were **compressed to form limestone**.

life by greenhouse gases absorbing radiation radiated by the Earth. Greenhouse gases keep temperatures on Earth high enough to support life. Water Greenhouse gas

vapour, methane and carbon dioxide are greenhouse gases. Short wavelength The **radiation** from the **Sun**. Is able to **pass through** the Earth's atmosphere and warm the surface of the Earth without being absorbed by greenhouse gases. radiation Long wavelength

The **increase** of the **average temperature** of the **Earth**.

The **radiation from the Earth's surface**. Some is **absorbed** by greenhouse radiation gases and doesn't escape the atmosphere. The total amount of carbon dioxide and other greenhouse gases emitted over Carbon footprint the **full life cycle** of a product or event.

the Earth's surface transparent to the many types of re-radiates some of radiation from the radiates infrared Sun's infrared but the Earth's infrared. hot Sun, including back into Space. absorbs infrared back towards the infrared, visible radiated by the Earth's surface. Greenhouse light, and ultraviolet Earth's surface. radiation. This is because **Effect** photons in the Earth's infrared radiation do not have the same energy as those in the Sun's infrared. Some of the Sun's radiation is absorbed by the Earth's atmosphere or reflected back into space. How humans increase carbon dioxide in the How humans increase methane in the atmosphere atmosphere Combustion of fossil fuels Increased animal farming Deforestation Decomposition of rubbish in landfill How humans can decrease carbon dioxide How humans can decrease methane concentration concentration

The atmosphere is

The atmosphere

Alternative foods - non-animal based

Effect Toxic gas. Colourless and

odourless so hard to detect.

Increased recycling

Warmed by the Sun,

Carbon off-setting – planting more trees **Effects of global warming**

The Earth receives

Some regions will **not** be able to produce **enough food** because of **drought**.

Changes to distribution of species and migration patterns. **Increase in sea levels** because of melting of polar ice caps.

Reduction of water supplies in some regions.

Use alternative forms of energy e.g. wind turbines

Carbon capture – capturing CO₂ from power stations

Energy efficiency e.g. more efficient cars

Section 4: Common Pollutants

Pollutant Formula Carbon monoxide CO

Incomplete combustion of a hvdrocarbon fuel.

Burning coal or petrol. Both contain SO₂

Sulfur dioxide In car engines. No and Oo from air

Cause respiratory problems sulfur which reacts with oxygen in the air. (e.g. for those with asthma). Combine with water vapour to NO_x Nitrogen oxides react at **high temperatures**. cause acid rain. Incomplete combustion of a **Global dimming** (reduction in CO_2 Particulates | hydrocarbon fuel. sunlight reaching Earth).

Cause

Chemistry 10: Using Resources

Section 1: Key Terms

Renewable resources	A resource used by humans that can be replenished e.g. trees. If not mana correctly, the resource may decrease.	aged
	correctly, the resource may decrease.	

A resource used by humans that has a **limited supply** e.g. coal.

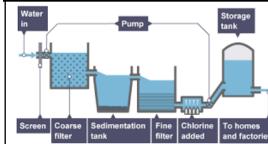
- Water that is safe to drink. Has low levels of dissolved salts and microbes.
- Water that has **low levels of dissolved salts**. Sea water is not fresh water. Fresh water

 - **Only** contains water molecules, nothing else.
 - A process that removes salt from sea water to create potable water. Expensive as it requires a lot of energy. Only necessary in areas with small amounts of fresh water e.g. Spain.
- Wastewater produced by people. Contains potentially dangerous chemicals and Sewage large numbers of bacteria.

Section 2: Potable Water

Distillation:

Water is heated to 100°C.

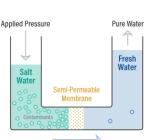

to the liquid state.

Finite resource

Potable water

Pure water

Desalination


Obtaining potable water in countries with plentiful fresh water e.g. the UK

• Find a suitable source of fresh water (e.g. a

- reservoir).
- Pass through **filter beds to remove particles**.
- **Sterilise** to kill microbes e.g. by using **chlorine**, ozone or ultraviolet light.

Obtaining potable water in countries with limited fresh water requires treatment of sea water:

Reverse Osmosis

- **Pressure** is applied to the water.
- The water molecules move through the
- Other particles are too large and are not able

Reverse osmosis:

partially-permeable membrane.

It **evaporates**, leaving the salt behind. A condenser cools the water to return it to move through. **Section 3: Sewage Treatment**

Screening and grit **Removes rags, paper, plastics** etc. that may block pipes. removal Suspended particles settle out of the water an fall to the bottom of a Sedimentation sedimentation tank to form the sewage sludge. Bacteria digest the sludge in the absence of oxygen. This breaks it down. Anaerobic digestion of sewage sludge **Methane and carbon dioxide are produced** by the bacteria. Aerobic biological Aerobic bacteria digest more of the organic matter in the effluent (the treatment of treated waste water). sewage effluent

Section 4: Alternative Methods of Metal Extraction

electrolysis.

that **contains copper compounds**. Plants are grown on low-grade copper ores. The plants absorb the **Phytomining copper** and are then **burned**. The **ash contains copper compounds**. A method of **obtaining pure copper** from the copper compounds produced in

Bacteria grow on low-grade copper ores. They produce a leachate (liquid)

Displacement using phytomining and bioleaching. Iron displaces copper from its compounds as scrap iron iron is more reactive. Cheap. A method of **obtaining pure copper** from the copper compounds produced in phytomining and bioleaching. Copper compounds can be dissolved and then Electrolysis the positive copper ions would be attracted to the negative electrode in

Section 5: Life Cycle Assessment

Bioleaching

	Cycle Absessment
Life Ovelo	Life cycle assessments assess the environmental impact of products. A LCA assesses the use of water, resources, energy sources and production of some wastes during the following stages: • extracting and processing raw materials
Life Cycle	
Assessment	• manufacturing and packaging
	use and operation during its lifetime
	• disposal at the end of its useful life, including transport and distribution at
	each stage.

The **environmental impact** of products can be **reduced** by reusing the Reuse product. Only suitable for some products e.g. glass bottles.

Some materials can be recycled e.g. metals. Metals can be **recycled by** Recycling melting and recasting or reforming into different products.