Chemistry 1: At	omic Structure	and the F	Periodic Ta	ble		Section 4: P	eriodic Table		
Section 1: Key Ter	rms						Elements		
Atom	The smallest atoms. No over	part of an e erall electric	element that cal charge.	can exist. Very small ,	All substances are made of radius of 0.1nm.	Group	group ha similar p		
Element	An element co r There are abou	n tains only It 100 eleme	one type of ents.	f atom . Fou	nd on the Periodic Table.	Period	Elements across th		
Compound	Two or more separated into	elements c the element	hemically b s through che	onded with emical reaction	each other. Can only be ons.	Metal Non-Metal	Elements Elements		
Mixture	xture Contains two or more elements or compound the separated using physical methods e.g. by distillation and chromatography.			compounds Is e.g. by filt	not chemically bonded . ration, crystallisation,	Mendeleev	Made the re-arran		
Filtration	A process that	separates	mixtures of ir	nsoluble so	lids and liquids.				
Crystallisation	A process that liquid to leave of	separates (crystals.	dissolved so	lids from li	quids by evaporating the				
Distillation	A process that	separates a	a mixture of	f liquids bas	ed on their boiling points .		Period —		
Chromatography	A process that stationary ph	separates i ase (e.g. pa	mixtures by aper)	how quick	y they move through a				
Isotope An atom of the same element with different numbers of neutrons .							Elements in the modern		
Relative atomic mass An average value of mass that takes account of the abundance of the isotopes of the element.					periodic table are arranged by atomic				
Section 2: Propert	ties of Sub-Atom	ic Particles	5			(proton) n	number.		
Sub-atomic partie	cle Mass	Charge	Position	in Atom					
Proton	1	+1	Nucleus			Section 3: G	rouns of the		
Neutron	1	0	Nucleus			Group	Dronertie		
Electron	Very small	-1	Orbiting in	shells		Group	Unreactive		
Mass number – the total number of	⇒ 23 ⊾ ∎	At	tomic numb	er – the	Electron configuration– Electrons fill the first energy	Group 0 Noble Gases	do not form molecules.		
neutrons		C nu (th	umber of prone number of the same in a	otons electrons an atom)	Maximum electrons: 2 in first shell 8 electrons in other shells	Group 1	Reactive because they		
Section 3: Develop	oment of Atomic	Model					can easily los		
Plum Pudding Th	e plum pudding odel thought that t	Nuclear he	Model	Ruther found a	ford's scattering experiment central area of positive charge.				
en ind	om is a ball of ositive charge wi ogative electrons nbedded in it. W correct.	th s as		The nucleu nucleu Chadw Bohr di electro	clear model has a positive s and electrons in shells . ick later discovered neutrons . scovered the arrangement of ns in shells .	Group 7 Halogens	Non-metals. Form molecules v pairs of atom		

Its in the same vertical column are in the same group. Elements in the same have the same number of electrons in their outer shell , and therefore r properties .									
nts in the same the period.	horizoı	ntal row	. The a	tomic n	umber	increa	ses l	oy on	e moving
nts that react to	form po	sitive ion	s. Left a	nd cen	tre of p	periodi	c tab	le (e	cept H).
nts that react to	form ne	gative io	ns. Rigł	nt of pe	riodic t	able.			
the modern periodic table by leaving gaps for undiscovered elements and anging some elements (Mendeleev could only measure relative atomic mass, pmic number).									
I Grou	qu				13 5 Ben 13	14 15 6 7 Carbon 12.01 14.01 14	16 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 He	8 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
n	3 4 21 22 22 3 32 4 32 4 32 4 32 7 32 7 3 3 3 3 3 3 3 3 3 3 3 3 3	5 6 7 22 V Ch Mn State 10000 State State State 10000 State State Non Mon Co State Non Mon Co State 10000 Mon Co State 10000 Mon Co Co 10000 Mon Co Co 10000 Mon Co Mon Co 10000 Mon Mon Co Mon Mon Co 10000 Mon Mon	8 9 28 27 Bree 20 With State 26 44 46 44 46 47 86 78 77 000 100 100 <	10 11 28 20 Will Cause of the second s	12 Margan 30 31 Barrier Garrier 30 31 Barrier Garrier 30 64 Barrier 66 Barrier 1124 1124 113 112 113 Coursel 114 Coursel 114 Coursel 114 Coursel 114 Coursel 114 Coursel 112 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 113 112 114 113 114 </td <td>Image Property 312 32 32 33 Ge 33 T2.2.9 33 Dimension 74.92 Son 51 Son 55 Pb 82 Biomedia Biomedia Marce 82 Biomedia Biomedia Biomedia Biomedia <</td> <td>Social Social Social</td> <td>0 85 2 35 5 2 86 2 8 87 8 8 97930 10 8 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 1 3 3 1 3 3 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>200 0 0 0 0 0 0 0 0 0 0 0 0</td>	Image Property 312 32 32 33 Ge 33 T2.2.9 33 Dimension 74.92 Son 51 Son 55 Pb 82 Biomedia Biomedia Marce 82 Biomedia Biomedia Biomedia Biomedia <	Social Social	0 85 2 35 5 2 86 2 8 87 8 8 97930 10 8 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 1 3 3 1 3 3 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 0 0 0 0 0 0 0 0 0 0 0 0

Periodic Table

Group	Properties	Trends	Reactions
Group 0 Noble Gases	Unreactive and do not form molecules.	Boiling point increases going down the group.	Very unreactive as they have full outer shells.
Group 1 Alkali Metals	Reactive because they can easily lose one electron.	Reactivity increases going down the group.	With water : Metal + water \rightarrow Metal hydroxide + hydrogen With oxygen : Metal + oxygen \rightarrow Metal oxide With chlorine : Metal + chlorine \rightarrow Metal chloride
Group 7 Halogens	Non-metals. Form molecules with pairs of atoms	Reactivity decreases going down the group. Boiling point and melting point increase going down the group.	A more reactive halogen can displace a less reactive halogen from a solution of its salt.

Chemistry 2: Bonding, Structure and the Properties of Matter

Section 1: Bonding Ke	y Terms
Ion	An atom that is charged because it has gained or lost electrons .
Ionic bond	The bond between two oppositely charged ions (metal and non-metal). Occurs because of electrostatic attraction.
Electrostatic attraction	The force that holds two oppositely charged ions together. A strong force.
Metals	In ionic bonding, metals lose electrons to become positively-charged ions.
Non-metals	In ionic bonding, non-metals gain electrons to become negatively-charged ions.
Giant lattice	A large 3D structure that contains a lot of bonds.
Covalent bond	A bond formed when non-metals share electrons . A strong bond.
Molecule	A small group of atoms held together with covalent bonds. Not charged.
Polymer	Very large covalent compounds with many repeating units.
Metallic bonding	The electrons in the outer shell of metal atoms are delocalised and so are free to move through the whole structure. The sharing of delocalised electrons gives rise to strong metallic bonds .
Alloy	A mixture of two or more elements , at least one of which is a metal . E.g. steel

Section 2: Ionic Bonding

In ionic bonding, metals lose electrons to become positively-charged ions. Non-metals gain these electrons to become negatively-charged ions. Key Na⁺ CI⁻ +

Two representations of a **giant ionic lattice**. The lines represent ionic bonds.

High melting point

Property of ionic compounds	Reason
ligh melting point	There is a strong electrostatic force between the positive and negative ions in the giant lattice. A large amount of energy is needed to overcome this force.
Conduct electricity when iquid/ molten	Ions are able to move so there is a flow of charged ions (current).
Do not conduct electricity vhen solid	Ions are in fixed positions so cannot flow.

•Cl
×

(2, 8, 8)

Na

(2,8)

Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form

a lattice. A large amount of energy is needed to overcome all these bonds.

Section 5: Small Carbon-Based Structures

Fullerene

Graphene

Carbon nanotube

Section 1: Properties of Metals								
	Structure	Properties	Uses					
Fullerene	Hollow-shaped . Usually hexagonal rings of carbon atoms. E.g. Buckminsterfullerene (C ₆₀)	Very strong . Hollow so can contain other chemicals within it.	Drug delivery, lubricants.					
Graphene	A single layer of graphite.	Very strong . Has delocalised electrons so it is able to conduct electricity .	Electronics, composites.					
Carbon nanotube	Cylindrical tubes of carbon atoms that are very long compared to their diameter.	Very strong, light and flexible . Has delocalised electrons so it is able to conduct electricity .	Nanotechnology, electronics, reinforcing (e.g. tennis rackets).					

Section 6: Polymers

Solid Usually solid because the intermolecular forces between polymer molecules are relatively strong.	Property	Reason
	Solid	Usually solid because the intermolecular forces between polymer molecules are relatively strong.

Section 7: Metallic Bonding

A pure metal. It consists of metal ions in layers with delocalised electrons.

An alloy. The layers have been distorted by the presence of other elements

7a Properties of Pure Metals								
Property	Reason							
High melting points	Strong electrostatic forces between the positive ions and delocalised electrons. Requires a large amount of energy to overcome.							
Conduct electricity	Metals have delocalised electrons . These electrons are able to move through the structure and carry charge.							
Conduct heat	The delocalised electrons are able to move and transfer thermal energy through the structure.							
Malleable	The layers are able to slide over each other so the metal can be bent and shaped. The attraction between the positive ions and delocalised electrons prevents the metal from shattering.							
7b Properties of Alloy	s .							
Property	Reason							

Harder than metals The **layers are distorted** by the presence of other elements. This **prevents the layers from being able to slide over each other**.

Section 8: States of Matter

State symbol – (s)

State symbol – (I)

Gas

State symbol – (g)

Chemistry 3: Quanti	tative Chemistry	Section 2: Calculations and Examples				
Section 1: Bonding Key T	erms		Add up all the atomic masses in a formula.			
Law of conservation of mass No atoms are lost or gained during a chemical reaction . The mass of the products is the same as the mass of the reactants. Some reactions appear to give a change in mass , but this is because a gas may have		Calculating relative formula mass (<i>M_r</i>)	e.g. H ₂ O. Mass of hydrogen = 1. Mass of oxygen = 16. (2x1) + 16 = 18, so M_r of H ₂ O = 18			
	escaped from the reaction container.		Percentage by mass in a compound = <u>Mass of element</u> $x100$ <u>Mr of compound</u>			
Relative atomic mass (A _r)	The average mass of an atom of an element compared to Carbon-12.	Percentage by mass in a				
Relative formula mass (<i>M</i> _r)	The sum of all the atomic masses of the atoms in a formula (e.g. H_2O).	compound	e.g. What is the percentage by mass of hydrogen in water?			
Uncertainty	The interval within which the true value can be expected to lie . E.g. $25^{\circ}C \pm 2^{\circ}C$ – the true value lies between 23°C and 27°C.		Percentage mass of hydrogen in water = $\frac{2}{18} \times 100 = 11.1\%$			
	Symbol equations should be balanced – they should have the same number of atoms of each element on each side.		Percentage uncertainty = <u>Uncertainty</u> x100 Quantity being measured			
Balanced Symbol Equations	e.g. Mg + $O_2 \rightarrow$ MgO This is NOT balanced (more Oxygen atoms on the left hand side)	Percentage uncertainty	e.g. What is the percentage uncertainty of a 50 cm^3 measuring cylinder accurate to $\pm 2 \text{ cm}^3$?			
	2 Mg + $O_2 \rightarrow$ 2 MgO This is a balanced symbol equation		Percentage uncertainty = $\frac{2}{50} \times 100 = 4\%$			
Concentration	A measure of the number of particles of a chemical in a volume . Can be measured in g/dm^3 .		Volume in $dm^3 = \frac{volume of liquid in cm^3}{1000 cm^3}$			
Decimetre ³ (dm ³)	A measurement of volume. Contains 1000cm ³ .	Volume in dm ³	e.g. What is the volume in dm ³ of 500cm ³ of hydrochloric acid?			
	·		Volume in $dm^3 = \frac{500}{1000} = 0.5 dm^3$			

Chemistry 4: Chemical Changes

Section 1: Key Term	Section 1: Key Terms							
Metal oxide	Metals react with oxygen to produce metal oxides. This is an oxidation reaction.							
Displacement reaction	A more reactive metal can displace a less reactive metal from a compound.							
Oxidation	Chemicals are oxidised if they gain oxygen in a reaction.							
Reduction	Chemicals are oxidised if they lose oxygen in a reaction.							
Acid	A chemical that dissolves in water to produce H ⁺ ions .							
Base	A chemical that reacts with acids and neutralises them. E.g. metal oxides , metal hydroxides , metal carbonate							
Alkali	A base that dissolves in water. It produces OH- ions in solution.							
Neutralisation	When a neutral solution is formed from reacting an acid and alkali . General equation: $H^+ + OH^- \rightarrow H_2O$							
рН	A scale to measure acidity/ alkalinity.							

Section	Section 2: Making a Soluble Salt					
1	Add solid metal, metal carbonate, metal oxide or metal hydroxide to an acid.					
2	Add solid until no more reacts .					
3	Filter off excess solid.					
4	Evaporate to remove some of the water.					
5	Leave to crystallise.					
6	Remove all water in a desiccator/ oven .					

<u>The pH Scale</u> – can be measured using universal indicator or a pH probe

	Acidic N					Neuti	Neutral					Alkaline			
	pH 0-6 F					pH 7	pH 7					pH 8-14			
рH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Potassium W ar fla Sodium W ar Lithium W sn Calcium Fi	/hen potassium is added round very quickly. The ame . /hen sodium is added to round on the surface. It /hen lithium is added to maller. izzes quickly with dilute	to water, the metal melts metal is also set on fire, w water, it melts to form a b fizzes rapidly. water, it floats. It fizzes st	and floats. It moves ith sparks and a lilac pall that moves readily and becomes	Î
Sodium W ar Lithium W Sn Calcium Fi	/hen sodium is added to round on the surface. It /hen lithium is added to naller. izzes quickly with dilute	water, it melts to form a b fizzes rapidly. water, it floats. It fizzes st	eadily and becomes	
Lithium W sn Calcium Fi	/hen lithium is added to maller.	water, it floats. It fizzes st	eadily and becomes	
Calcium Fi	izzes quickly with dilute	a acid		
		e aciu.		
Magnesium Fi	izzes quickly with dilute	e acid .		
(Carbon)				
Zinc B	ubbles slowly with dilu	ite acid .		
Iron Ve	ery slow reaction with	dilute acid .		
(Hydrogen)				
Copper No	ber No reaction with dilute acid.			
Section 4: Ext	racting Metals			
Very unreactive metals e.g. Gold Found naturally in the ground. Don't need extracting .				
Metals less reactive than carbon Extracted by reduction with ca		th carbon.		
Metals more reactive than carbon Extracted by electrolysis .				
Section 5a: Reactions of Acids				
With metalAcid + Metal \rightarrow Salt + Hydrogen				
With alkali	Acid + Metal Hydro	xide \rightarrow Salt + Water	(Neutralisation reaction	on)
With metal oxide Acid + Metal of		\rightarrow Salt + Water	(Neutralisation reaction	on)
With carbonate Acid + Metal Carbonate → Salt + Water + Carbon Dioxide (Neutralisation reacti		ion)		
Section 5b: Sa	alts			
 Salts Hydrochloric Acid forms chloride salts e.g. Hydrochloric acid + Zinc → Zinc Chloride + Hydrochloric Acid forms sulfate salts Sulfuric Acids forms nitrate salts 		drogen		

Section 3: Reactivity

Chemistry 4: Chemical Changes

Positive
Anode
Negative
Is
Cathode

Electrolyte

Section 7 Electrolysis key terms				
Electrolysi	is	The process of splitting an ionic compound by passing electricity through it.		
Electrolyte	An ionic compound that is molten (melted) or dissolved in water. The ions are free to move.			
Electrode	lectrode An electrical conductor that is placed in the electrolyte and connected to th power supply .		d in the electrolyte and connected to the	
Cathode The electrode attached to the negative terminal of the power supply .		ive terminal of the power supply.		
Anode The electrode attache		The electrode attached to the positiv	hed to the positive terminal of the power supply .	
Section 8: What is discharged in electrolysis?				
Electrolyte		Cathode	Anode	
Molten Compound		Metal	Non-metal	
Dissolved compound (aqueous solution)		The metal if the metal is less reactive than hydrogen . Hydrogen is produced if the metal is more reactive than hydrogen .	Oxygen is produced unless the solution contains halide ions (chloride, bromide, iodide) when the halogen (chlorine, bromine, iodine) is produced.	
Section 9: Aluminium Electrolysis				
Cryolite	ryolite Aluminium oxide is dissolved in cryolite to lower its melting point. This saves money on energy costs.			
Cathode	Positi	ive Al³⁺ ions move to the cathode .	Aluminium is produced.	
Anode	Negative O²⁻ ions move to the anode . Oxygen is made. Wears away as the carbon anode reacts with oxygen to form carbon dioxide .			

Chemistry 5: Energy Changes

Section 7 Energy Changes Key Terms		
Conservation of energy	Energy is not created or destroyed, only transferred from one store to another	
Exothermic	A reaction that transfers energy to the surroundings so the temperature of the surroundings increases , e.g. combustion and neutralisation reactions. Used in self-heating cans and hand warmers .	
Endothermic	A reaction that takes in energy from the surroundings so the temperature of the surroundings decreases , e.g. thermal decomposition . Used in sports injury packs .	
Activation energy	The energy needed for particles to successfully react.	
Breaking bonds	Energy is needed to break bonds. Energy is released when bonds are formed.	
Forming bonds		

Chemistry 6: Rate and Extent of Chemical Change

Calculating rate of reaction:

Typical graph when measuring reactants used

Time (s)

Typical graph when measuring products formed

Section 1: Key terms		
Collision theory Reactions occur only when particles collide with enough energy .		llide with enough energy.
Activation energy The amount of energy particles		order to react .
Catalyst A chemical (or enzyme) that increases the rate of r itself (therefore they are not included in an equation). pathway for the reaction with a lower activation en		he rate of reaction without being used n equation). They provide an alternative ctivation energy.
Concentration The number of particles in a certain vol		ume.
Section 2: Facto	rs Affecting Rate	
Factor	Effect on Rate	Explanation
Concentration of reactants	Increasing the concentration increases the rate of reaction.	Increases the chance of a collision as there are more particles.
Pressure of gases	Increasing the pressure increases the rate of reaction.	Increases the chance of a collision as there are more particles.
Surface area of solid reactants	Increasing the surface area increases the rate of reaction.	Exposes more of the solid so that there is a greater chance of collisions occurring.
Temperature	Increasing the temperature increases the rate of reaction.	Increases speed at which particles move and makes collisions more energetic .
Catalyst	Catalysts increase the rate of reaction.	Lowers the activation energy.

Section 3: Reversible Reactions		
Reversible reaction	A reaction in which the products can also form the reactants . Shown as: A + B \Rightarrow C + D	
Exothermic	A reaction that releases energy to the environment.	
Endothermic	A reaction that takes in energy from the environment.	

Energy profile diagram for a reaction with/ without a catalyst.

Chemistry 7: Hydrocarbons

Section 1: Key terms		
Crude oil	A mixture of hydrocarbons formed over millions of years from dead plankton subjected to pressure.	
Hydrocarbon	A molecule containing hydrogen and carbon atoms only.	
Alkane	A hydrocarbon containing only single bonds . Follows the formula C_nH_{2n+2} .	
Fractional distillation	The method of separating hydrocarbons based on their boiling point.	
Intermolecular force	Weak forces of attraction that exist between molecules.	
Boiling point	The temperature at which a liquid turns into a gas .	
Viscosity	The ability of a substance to flow .	
Flammability	The ability of a substance to burn or ignite .	
Combustion	A reaction between a fuel and oxygen that produces heat.	
Alkene	A hydrocarbon containing at least one double bond . Alkenes are more reactive than alkanes and are used to make polymers .	
Bromine water	A chemical that is brown/ orange in colour. If added to an alkene it reacts and changes to colourless . Alkanes do not produce a change in colour.	
Cracking	The process by which less-useful long-chain hydrocarbons are split to produce smaller, more useful molecules (an alkane and an alkene)	
Fraction	A fraction contains similar length hydrocarbons with a small range of boiling points.	

Section 2: Alkanes н methane H-Ċ-H CH_4 Ĥ н н ethane H-Ċ-Ċ-H C_2H_6 Ĥ H н н н propane H-Ċ-Ċ-H C₃H₈ Ĥ н н н н н н butane H-Ċ—Н C_4H_{10} Ĥ ΗĤ Ĥ

Section 3: Fractional Distillation				
1	The crude oil is heated to 400°C.			Н
2	Most fractions evaporate and become vapours . The residue doesn't boil and flows to the bottom of the column.			Ε
3	Hot vapours rise up the column and cool down .			R
4	When the vapours cool to their boiling point they condense and flow out of the column.			С
5	Those with lower boiling points rise further before cooling down.			
6	Refinery gases do not cool down to their boiling point so remain as gases .			
	Section 4: Cracking			
	Cracking Method	Process	Temperature	2
(Catalytic Cracking	Fraction is heated in the presence of a zeolite catalyst .	500°C.	
Steam Cracking		Fraction is diluted with steam and heated .	850°C.	

Complete Combustion of Alkanes Equations: Note – the equation is balanced

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_2$$

Propane + Oxygen \rightarrow Carbon Dioxide + Water

Cracking Equations: Note - the equation is balanced

decane -> heptane + propene

 $C_{10}H_{22} \rightarrow C_7H_{16} + C_3H_6$ Large, less-useful

alk**a**ne

Smaller, useful Useful alkene alkane

Chemistry 8: Chemical Analysis

nd not mixed with any other	
na, not mixed with any other	
duct. Formulations are made d quantities. Formulations nes, alloys, fertilisers and	
m a solid to a liquid.	
Section 2: Impure and Pure Graphs	

Impure substances do not melt at specific temperatures.

Pure substances do melt at specific temperatures (a horizontal line is produced).

Section 4: Testing for Gases		
Gas	Procedure	Positive Result
Hydrogen	Hold a lit splint at the end of a test tube producing gas.	Hydrogen burns with a pop noise.
Oxygen	Hold a glowing splint in a test tube of the gas.	The splint relights if oxygen is present.
Carbon dioxide	Bubble gas through a solution of limewater .	Carbon dioxide causes the limewater to turn milky .
Chlorine	Place damp litmus paper in the gas.	The litmus is bleached white if chlorine is present.

Section 3: Chromatography		
Chromatography	A method used to separate mixtures into their different chemicals.	
Solvent	The chemical that dissolves the sample in chromatography.	
Solvent front	The maximum distance the solvent moves up the paper.	
Stationary phase	The medium (e.g. paper) through which the mobile phase passes in chromatography .	
Mobile phase	The solvent (e.g. water) that carries the sample (e.g. ink) in chromatography .	
R _f value	A value (always less than 1) that shows how far the substance has moved compared to the solvent. Equation: $R_f = \frac{distance moved by substance}{distance moved by solvent}$	

Chemistry 10: Using Resources		
Section 1: Key Terms		
Finite resource	A resource used by humans that has a limited supply e.g. coal.	
Renewable resources	A resource used by humans that can be replenished e.g. trees. If not managed correctly, the resource may decrease.	
Potable water	Water that is safe to drink. Has low levels of dissolved salts and microbes.	
Fresh water	Water that has low levels of dissolved salts. Sea water is not fresh water.	
Pure water	Only contains water molecules, nothing else.	
Desalination	A process that removes salt from sea water to create potable water. Expensive as it requires a lot of energy . Only necessary in areas with small amounts of fresh water e.g. Spain.	
Sewage	Wastewater produced by people. Contains potentially dangerous chemicals and large numbers of bacteria.	
Section 2: Potable Water		

Water in Pump Storage tank Screen Filter Screen Filter Sedimentation Fine filter Chlorine added To homes and factories

Obtaining potable water in countries with plentiful fresh water e.g. the UK

- Find a suitable source of fresh water (e.g. a **reservoir**).
- Pass through **filter beds to remove particles**.
- Sterilise to kill microbes e.g. by using chlorine, ozone or ultraviolet light.

Obtaining potable water in countries with limited fresh water requires treatment of sea water:

Distillation:

- Water is heated to **100°C**.
- It evaporates, leaving the salt behind.
- A **condenser cools** the water to return it to the liquid state.

Reverse Osmosis

Reverse osmosis:

- **Pressure** is applied to the water.
- The water molecules move through the partially-permeable membrane.
- Other particles are too large and are not able to move through.

Section 3: Sewage Treatment		
Screening and grit removal	Removes rags, paper, plastics etc. that may block pipes.	
Sedimentation	Suspended particles settle out of the water an fall to the bottom of a sedimentation tank to form the sewage sludge .	
Anaerobic digestion of sewage sludge	Bacteria digest the sludge in the absence of oxygen . This breaks it down. Methane and carbon dioxide are produced by the bacteria.	
Aerobic biological treatment of sewage effluent	Aerobic bacteria digest more of the organic matter in the effluent (the treated waste water).	
Section 4: Alterna	tive Methods of Metal Extraction	
Displacement using scrap iron	A method of obtaining pure copper from the copper compounds produced in phytomining and bioleaching. Iron displaces copper from its compounds as iron is more reactive . Cheap .	
Electrolysis	A method of obtaining pure copper from the copper compounds produced in phytomining and bioleaching. Copper compounds can be dissolved and then	

electrolysis.

the positive copper ions would be attracted to the negative electrode in

Section 5: Life Cycle Assessment	
Life Cycle Assessment	Life cycle assessments assess the environmental impact of products . A LCA assesses the use of water , resources , energy sources and production of some wastes during the following stages: • extracting and processing raw materials • manufacturing and packaging • use and operation during its lifetime • disposal at the end of its useful life, including transport and distribution at each stage.
Reuse	The environmental impact of products can be reduced by reusing the product. Only suitable for some products e.g. glass bottles .
Recycling	Some materials can be recycled e.g. metals. Metals can be recycled by melting and recasting or reforming into different products .